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ABSTRACT

In this paper, an energy flow control strategy to reduce the

smart meter privacy leakage is studied. The considered smart

grid is equipped with an energy storage device. The privacy

leakage is modeled as optimal Bayesian detections on the be-

haviors of the consumer made by an authorized adversary.

To evaluate the privacy risk, a Bayesian detection-operational

privacy leakage metric is proposed. The design of an optimal

privacy-preserving energy control strategy can be formulated

as a belief state MDP problem. Therefore, standard methods

and algorithms can be utilized to obtain or to approximate the

optimal control strategy. A simplified problem to design an

instantaneous optimal privacy-preserving control strategy is

also considered. It is shown that the problem of the instanta-

neous optimal control strategy design can be formulated as a

set of linear programmings.

Index Terms— Bayesian detection, linear programming,

MDP, smart meter privacy

1. INTRODUCTION

A smart grid is an energy network which manages the en-

ergy generation and distribution more efficiently following

the real-time consumer’s energy demand through control and

communication technologies [1]. As benefits from the smart

grid, energy efficiency can be improved; reliability and ro-

bustness can be increased; and costs of the energy provider

and consumer can be reduced. However, these benefits come

with privacy/secrecy challenges [2, 3]. In a smart grid, the

smart meter provides the real-time information of energy sup-

plies from the energy provider on the demands of the con-

sumer, which can be utilized to infer on the privacy of the

consumer [4, 5]. Regarding the smart meter privacy prob-

lem, different privacy-preserving approaches have been de-

veloped. An encryption method was proposed in [6] to pro-

tect privacy of individual consumers through the neighbor-

level data aggregation. In [7], a privacy scheme was devised

to schedule the usage of delay-tolerable appliances to hide

the energy consumption characteristics of other appliances.
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Fig. 1. The studied model of smart meter privacy leakage to

an authorized adversary where energy and information flows

are represented by solid and dashed arrows respectively.

The above methods work well in most cases except for hav-

ing compromised authorized people. Taking into account the

latter threat, some works utilize alternative energy sources or

energy storage devices to hide the energy demand characteris-

tics. In [1, 8–10], they modeled and solved such problems by

using information theoretic methods. In [11], this idea led to

a problem to minimize the variance of energy supplies from

the energy provider and therefore to “flatten” the smart meter

readings. In [12–14], privacy problems in information theo-

retic formulation were shown to be reformulated as problems

of Markov decision process (MDP).

In this paper, we consider the smart meter privacy leak-

age to an informed, greedy, authorized adversary and de-

sign the optimal privacy-preserving energy control strat-

egy in the presence of an energy storage device. Differ-

ent from the abstract privacy leakage interpretations used

in [1, 8–14], we model the smart meter privacy leakage from

a Bayesian detection-operational perspective. Some works

have been done to relate the hypothesis detection and pri-

vacy risk [15–18]. Following our previous work [18], we

propose a privacy leakage metric in terms of instantaneous

minimal Bayesian risk of the adversary and then identify a

belief state MDP problem to optimize the privacy-preserving

energy control strategy. In addition, a lower-complexity prob-

lem of instantaneous optimal energy control strategy design

is discussed later.

In the following, we will denote a random variable by a

capital letter, its realization by the lower-case letter, and its

definition domain by the calligraphic letter. Let Xt+k
t and

xt+k
t denote a random sequence (Xt, . . . , Xt+k) and its re-

alization (xt, . . . , xt+k). Particularly, Xk, xk are used when
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t = 0; X∞
t , x∞t are used when k = ∞; and X∞, x∞ are

used when t = 0 and k =∞.

2. SMART GRID MODEL

In this paper, we consider the smart grid model shown in

Fig. 1. In the infinite time horizon, during each time slot

t ∈ {0, 1, . . . }, the accumulated energy demand Xt of the

consumer (C), energy storage state Zt of the energy storage

(ES) device, and energy supply Yt from the energy provider

(EP) are defined onX = {0, e, . . . , ue},Z = {0, e, . . . ,me},
and Y = {0, e, . . . , (u+m)e} where e is the energy measur-

ing precision. For the consumer, let Ht defined on H denote

an n-ary hypothesis of his behavior in the slot t. Assume that

the initial state (H0, X0, Z0) is generated following the p.m.f.

pH0,X0,Z0
; Ht+1 is generated depending on Ht only and fol-

lowing the time-invariant1 p.m.f. pHt+1|Ht
; the energy de-

mand Xt+1 is generated depending on (Ht+1, Xt) only and

following the time-invariant2 p.m.f. pXt+1|Ht+1,Xt
; and the

control unit (CU) requests an energy supply Yt depending on

(Xt, Zt) only and following a control strategy characterized

by the p.m.f. pYt|Xt,Zt
. These settings imply the following

Markov chains.

Ht+1 −Ht − (Ht−1, H∞
t+2, X

∞, Z∞, Y∞)

Xt+1 − (Ht+1, Xt)− (Ht, H∞
t+2, X

t−1, X∞
t+2, Z

∞, Y∞)

Yt − (Xt, Zt)− (H∞, Xt−1, X∞
t+1, Z

t−1, Z∞t+1, Y
t−1, Y∞t+1)

In our model, the instantaneous energy demand xt is always

satisfied and no energy is wasted. Then, we have

zt + yt − xt = zt+1

which leads to

pZt+1|Xt,Zt
(zt + yt − xt|xt, zt) = pYt|Xt,Zt

(yt|xt, zt). (1)

Thus, Zt+1 depends on (Xt, Zt) only and a control strategy

can be equivalently characterized by the p.m.f. pZt+1|Xt,Zt
.

In addition, a valid control strategy satisfies the following

property:

pYt|Xt,Zt
(yt|xt, zt) = 0 if











yt < max{0, xt − zt}

or

yt > me+ xt − zt

, (2)

where the first condition indicates that the lower bound of the

energy supply yt is xt−zt to provide the rest energy when the

energy storage zt cannot satisfy the energy demand xt solely;

and the second condition indicates that the upper bound of yt
is constrained by the maximum energy storage limitation.

We consider a privacy leakage problem that the smart me-

ter (SM) readings Y∞ are utilized by an authorized adversary

1∀t ≥ 0, k ≥ −t, pHt+1|Ht
= pHt+k+1|Ht+k

.
2∀t ≥ 0, k ≥ −t, pXt+1|Ht+1,Xt

= pXt+k+1|Ht+k+1,Xt+k
.

(AD) to infer on the behaviors H∞ by making guesses Ĥ∞.

We assume that a decision Ĥt of the adversary is made de-

pending on Yt only and following a decision strategy char-

acterized by the p.m.f. pĤt|Yt
. This assumption implies the

following Markov chain.

Ĥt − Yt − (Ĥt−1, Ĥ∞
t+1, H

∞, X∞, Z∞, Y t−1, Y∞t+1)

In addition, we assume the adversary is informed and greedy

such that the optimal decision strategies {p∗
Ĥt|Yt

}∞t=0 are

used based on his knowledge of the p.m.f.s pH0,X0,Z0
,

{pHt+1|Ht
}∞t=0, {pXt+1|Ht+1,Xt

}∞t=0, and used control strate-

gies {pYt|Xt,Zt
}∞t=0. In practice, such an informed, greedy,

authorized adversary can be a compromised manager of the

energy provider.

3. ENERGY CONTROL AGAINST PRIVACY

LEAKAGE

3.1. Bayesian Detection Model of Privacy Leakage

In the previous works, the smart meter privacy leakage was

measured by the uncertainty of the adversary about energy

demand profile, e.g., entropy and variance. Here, we model

the smart meter privacy problem as a Bayesian hypothesis de-

tection, i.e., the privacy leakage has an operational interpreta-

tion.

Let c(ĥt, ht) denote the non-negative cost of the adversary

to make a decision ĥt when the true behavior is ht. The detec-

tion costs are assigned following our own privacy-preserving

design interest. That will lead to an energy control strategy

guaranteeing the desired privacy-preserving performance of

us (the designers). According to [19], the optimal decision

strategy p∗
Ĥt|Yt

used by the informed and greedy adversary

is a deterministic likelihood-ratio test (LRT) and the minimal

Bayesian risk r∗t is a function of pHt,Xt,Zt
and the control

strategy pYt|Xt,Zt
as

r∗t =min
∑

ĥt,ht∈H2

c(ĥt, ht)pĤt,Ht
(ĥt, ht)

=
∑

yt∈Y

min
ĥt∈H

{
∑

ht,xt,zt∈H×X×Z

c(ĥt, ht)

pYt|Xt,Zt
(yt|xt, zt)pHt,Xt,Zt

(ht, xt, zt)}.

(3)

For the considered privacy leakage problem in the infinite

time horizon, we propose to use the accumulated discounted

minimal Bayesian risk V as the privacy leakage metric as

V =

∞
∑

t=0

βtr∗t , (4)

where 0 ≤ β < 1 is the discount factor. It is obvious that

V is a function of {pHt,Xt,Zt
}∞t=0 and {pYt|Xt,Zt

}∞t=0. From

the operation perspective, the proposed privacy leakage met-

ric V is applicable in the scenarios where privacy-preserving

concern degrades as time goes on.
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3.2. Optimal Privacy-Preserving Control Strategy Design

in Belief State MDP Formulation

Using the proposed privacy leakage metric, our objective is to

design the optimal control strategies to suppress the privacy

leakage risk, i.e., to maximize V :

{p∗Yt|Xt,Zt
}∞t=0 = argmax

pYt|Xt,Zt
∈A,∀t≥0

V, (5)

where A is the valid control strategy set and consists of all

p.m.f.s satisfying the condition (2).

Based on the settings in Section 2, we have

pHt+1,Xt+1,Zt+1|Ht,Xt,Zt

=pZt+1|H
t+1

t ,X
t+1

t ,Zt
· pXt+1|H

t+1

t ,Xt,Zt
· pHt+1|Ht,Xt,Zt

=pZt+1|Xt,Zt
· pXt+1|Ht+1,Xt

· pHt+1|Ht
.

Since the p.m.f. pZt+1|Xt,Zt
represents a control strategy, the

transition from (Ht, Xt, Zt) to (Ht+1, Xt+1, Zt+1) depends

on the used control strategy. On observing pHt,Xt,Zt
and us-

ing control-strategy-based pHt+1,Xt+1,Zt+1|Ht,Xt,Zt
, the con-

trol unit can determine (observe) pHt+1,Xt+1,Zt+1
. The min-

imal Bayesian risk of the adversary r∗t can be seen as the

reward to use a control strategy pYt|Xt,Zt
given the p.m.f.

pHt,Xt,Zt
. Based on these observations, we intuitively have

the following proposition.

Proposition 1. The privacy-preserving energy flow control

design can be formulated as a belief state MDP problem.

Explicit identification of elements in the belief state MDP

problem is still required and shown in the following construc-

tive proof of Proposition 1.

Proof. Elements of the belief state MDP problem are identi-

fied as:

• State: st = (ht, xt, zt) ∈ S = H×X ×Z .

• Belief state: bt = pHt,Xt,Zt
∈ B.

• Action: at = pYt|Xt,Zt
∈ A.

• Belief state transition: pBt+1|Bt,At
(bt+1|bt, at) =



















1, if bt+1(st+1) =
∑

st∈S

pSt+1|St
(st+1|st)bt(st)

for all st+1 ∈ S

0, otherwise

.

Note that pSt+1|St
= pZt+1|Xt,Zt

pXt+1|Ht+1,Xt
pHt+1|Ht

where pZt+1|Xt,Zt
can be substituted by the used con-

trol strategy at = pYt|Xt,Zt
according to (1).

• Belief state reward: r∗t (bt, at).

• Policy: δt : B → A which maps a belief state bt to a

control strategy at.

By formulating the privacy-preserving energy flow con-

trol design as a belief state MDP problem, standard methods

can be used to obtain or to approximate the optimal design as

shown in the following.

3.3. Optimal Energy Flow Control

For the belief state MDP problem, define ∆ = {δ0, δ1, . . . }.
Regarding the objective to suppress the privacy leakage risk

to the lowest, ∆∗ = {δ∗0 , δ
∗
1 , . . . } is the solution to the opti-

mization problem as:

∆∗ = argmax
∆

V (∆, b0), for all b0 ∈ B. (6)

Bellman’s principle of optimality [20] indicates that for all

t ≥ 0 and a given b ∈ B

V (∆∗, b) = max
a∈A

{r∗t (b, a) + βV (∆∗, b′)} (7)

where b′ satisfies pBt+1|Bt,At
(b′|b, a) = 1. If the optimal

argument a∗ of the Bellman equation (7) exists, a stationary

solution ∆∗ exists and satisfies

a∗ = δ∗t (b), for all t ≥ 0 and a given b ∈ B. (8)

Generally, solving the Bellman equation (7) of the belief state

MDP problem is computationally complex due to the infinite

belief state and action domains. An approximation idea is to

use some discretization procedure, e.g., using α-vector algo-

rithm [21] by discretizing the action domain, using value iter-

ation algorithm by discretizing both the belief state and action

domains.

3.4. Instantaneous Optimal Control

Due to the computational complexity of the formulated be-

lief state MDP problem, we consider an instantaneous optimal

control strategy. In each time slot, a control strategy is used

to suppress the instantaneous privacy leakage risk by maxi-

mizing the instantaneous minimal Bayesian risk of the autho-

rized adversary. Denote the instantaneous optimal policies as

∆# = {δ#0 , δ
#
1 , . . . }. Then,

δ
#
t (bt) = argmax

pYt|Xt,Zt
∈A

r∗t (bt, pYt|Xt,Zt
). (9)

The problem (9) is not a convex optimization. However, it

can be rewritten as a set of linear programming problems as

discussed in the following.

It is known that the optimal decision strategy for the ad-

versary in a slot t is deterministic. There are l = |Ĥ||Y| =
n|Y| deterministic mappings from Y to Ĥ, i.e., there are l

deterministic candidate decision strategies for the adversary.

Let φj : Y → Ĥ with j ∈ {1, 2, . . . , l} denote the j-th de-

terministic candidate decision strategy. Given a belief state
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bt = pHt,Xt,Zt
and a deterministic candidate decision strat-

egy φj , define a subset of A as

Aj(bt) =































pYt|Xt,Zt
:

pYt|Xt,Zt
∈ A;

∀(yt, ĥt) ∈ Y ×H,
∑

st∈S

{(c(φj(yt), ht)− c(ĥt, ht))

pYt|Xt,Zt
(yt|xt, zt)bt(st)} ≤ 0.































.

It is obvious that a subset Aj(bt) is defined by linear con-

straints on pYt|Xt,Zt
. In addition, it can be easily verified that

⋃l

j=1Aj(bt) = A.

Proposition 2. The non-convex optimization problem in (9)

can be rewritten as

max
j∈{1,2,...,l}

{

max
pYt|Xt,Zt

∈Aj(bt)
r∗t (bt, pYt|Xt,Zt

)

}

(10)

to design the instantaneous optimal control strategy δ
#
t (bt).

In (10), the inner optimizations are all linear programmings.

Proof. For the j-th inner optimization in (10), the objective

r∗t (bt, pYt|Xt,Zt
) is maximized over a subsetAj(bt). The def-

inition of Aj(bt) makes the objective in the j-th inner opti-

mization reduce to
∑

yt∈Y

∑

st∈S

{c(φj(yt), ht)pYt|Xt,Zt
(yt|xt, zt)bt(st)}.

It is obvious the objective is a linear function of pYt|Xt,Zt
.

In addition, the subset Aj(bt) is defined by a set of linear

constraints of pYt|Xt,Zt
. Therefore, each inner optimization

in (10) is a linear programming problem to maximize a linear

objective of pYt|Xt,Zt
subject to a set of linear constraints on

pYt|Xt,Zt
.

Using standard methods, the inner linear programmings

can be efficiently solved. The outer optimization of (10) sim-

ply compares the results of the inner optimizations to deter-

mine the maximum instantaneous minimal Bayesian risk of

the adversary and instantaneous optimal strategy δ
#
t (bt).

Remark 1. The instantaneous optimal policies ∆# =
{δ#0 , δ

#
1 , . . . } are stationary such that δ

#
t = δ#, ∀t ≥ 0.

4. NUMERICAL STUDY

Here, we illustrate a simple numerical example. The system

is set as: a binary hypothesis n = 2, binary energy demand

u = 1, binary energy storage state m = 1. The p.m.f.s are set

as:

pH0,X0,Z0
(ha, 0, 0) = pH0,X0,Z0

(ha, e, e) = 0.1,

pH0,X0,Z0
(ha, 0, e) = pH0,X0,Z0

(ha, e, 0) = 0.2,

pH0,X0,Z0
(hb, 0, 0) = pH0,X0,Z0

(hb, 0, e) = 0.1,

pH0,X0,Z0
(hb, e, 0) = pH0,X0,Z0

(hb, e, e) = 0.1,

0 2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

t

V

V
t
(∆
#
)

V(∆
*
)

Fig. 2. Privacy-preserving performance comparison between

using optimal control strategies and using instantaneous opti-

mal control strategies.

pHt+1|Ht
(ha|ha) = 0.9,

pHt+1|Ht
(hb|hb) = 0.8,

pXt+1|Ht+1,Xt
(0|ha, 0) = pXt+1|Ht+1,Xt

(e|ha, e) = 0.7,

pXt+1|Ht+1,Xt
(0|hb, 0) = pXt+1|Ht+1,Xt

(e|hb, e) = 0.7.

The costs are set as: c(ha, ha) = c(hb, hb) = 0 and

c(ha, hb) = c(hb, ha) = 1. The discount factor is β = 0.5.

In Fig. 2, we use a blue circle to represent Vt(∆
#) =

∑t

k=0 β
kr∗k(δ

#
k ) which denotes an accumulated discounted

minimal Bayesian risk of the adversary until time slot t when

instantaneous optimal policies are used. The red dot line rep-

resents V (∆∗) when the optimal privacy-preserving energy

control strategies are used in the infinite time horizon. For this

example, the numerical results indicate that the instantaneous

optimal policies ∆# can approach the privacy-preserving

performance of the optimal privacy-preserving policies ∆∗

asymptotically.

5. CONCLUSION

In this paper, we consider the smart meter privacy leakage

to an informed, greedy, authorized adversary. We model the

privacy leakage as an optimal Bayesian detection on the be-

havior hypothesis of the consumer and measure the instanta-

neous privacy leakage risk by the minimal Bayesian risk of

the adversary in each time slot. We identify the design of

privacy-preserving energy control strategies as a belief state

MDP problem. Therefore, established standard methods and

algorithms can be used to solve the optimal energy control

policies which maximize the accumulated discounted mini-

mal Bayesian risk of the adversary. When we focus on sup-

pressing the instantaneous privacy leakage risk, the design

problem of an instantaneous optimal control policy can be

described by a set of linear programmings. Thereof, it can

be solved efficiently.
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