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ABSTRACT

In this paper we study how individual sensors can compress
their observations in a privacy-preserving manner. We pro-
pose a randomized requantization scheme that guarantees
local differential privacy, a strong model for privacy in which
individual data holders must mask their information before
sending it to an untrusted third party. For our approach,
the problem becomes an optimization over discrete mem-
oryless channels between the sensor observations and their
compressed version. We show that for a fixed compression
ratio, finding privacy-optimal channel subject to a distortion
constraint is a quasiconvex optimization problem that can be
solved by the bisection method. Our results indicate inter-
esting tradeoffs between the privacy risk, compression ratio,
and utility, or distortion. For example, in the low distortion
regime, we can halve the bit rate at little cost in distortion
while maintaining the same privacy level. We illustrate our
approach for a simple example of privatizing and recompress-
ing lowpass signals and show that it yields better tradeoffs
than existing approaches based on noise addition. Our ap-
proach may be useful in several privacy-sensitive monitoring
applications envisioned for the Internet of Things (IoT).

Index Terms— Local differential privacy, randomized re-
quantization, quasiconvex optimization, IoT.

1. INTRODUCTION

The advent of large-scale data mining and Internet of Things
(IoT) has highlighted the benefits and drawbacks of ubiqui-
tous monitoring. For example, continuous data collection has
been proposed for healthcare, transportation, energy manage-
ment, environmental sensing, and industrial control in order
to understand complex events such as disease outbreaks or
traffic congestion, or creating more energy-efficient environ-
mental control systems. Monitoring comes at a cost to pri-
vacy: users’ contributed data may be shared in unexpected
ways, causing privacy violations. From an engineering per-
spective, sensors must often be cheap and each sensor node
may be resource constrained in terms of processing speed,
memory and communication bandwidth. The goal of this
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work is to investigate tradeoffs between privacy, bandwidth,
and fidelity in a monitoring model for future IoT systems.

In order to understand these tradeoffs, we adopt the differ-
ential privacy framework [1, 2] for quantifying privacy risk.
Much of the existing work on differential privacy focuses on
designing algorithms that trade off privacy and utility (usually
accuracy) incurred by a trusted aggregator publishing func-
tions of private data, such as summary statistics. This trade-
off appears because privacy is guaranteed by randomizing the
output of the algorithm: the uncertainty caused by a “noisy”
output guarantees privacy. However, in an IoT scenario, mon-
itoring data has to be shared continuously (e.g. as time series)
and the sensor may not trust the data aggregator. Rastogi and
Nath [3] proposed an algorithm for sharing time series which
applies Laplace perturbation algorithm (LPA) [4] to the first
few Discrete Fourier Transform (DFT) coefficients of a data
sequence; Fan and Xiong [5] used filtering and adaptive sam-
pling techniques to privatize a single time series. In these
approaches the goal is to compute an aggregate across the se-
ries, so the noise can decrease with the number of individ-
uals [4]. Other approaches include making “events” private
(rather than the data) [6, 7]. Zhou et al. [8] studied the prob-
lem of dimensionality reduction via a private linear transfor-
mation. In this paper we use the local privacy model [9]: each
sensor shares a locally privatized version of their observation.
Our goal is to understand how privacy-accuracy tradeoffs are
affected by storage/bandwidth considerations.

In our system model, each sensor (or user) holds a se-
quence of real-valued data (e.g. time series) which needs to
be privatized and compressed at the user level while maintain-
ing a certain fidelity. We propose a novel privacy-preserving
compression scheme – randomized requantization, and study
the fundamental tradeoffs between privacy, compression and
utility. We show that minimizing privacy risk under a distor-
tion constraint at a fixed bitrate is a constrained quasiconvex
optimization problem. We also show that in the context of
Rastogi and Nath’s problem [3], we can achieve a better dis-
tortion and network scalability by perturbing and quantizing
in the transform domain.

2. PROBLEM SETTING

We consider a model in which each sensor observes a length-
n sequence of data Xn = (X1, X2, · · · , Xn) and wishes to
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share a private version X̂n to a central aggregator. We as-
sume that the sequence is already quantized to some discrete
set of levels X , so Xi ∈ X . We are interested in locally dif-
ferentially private requantization [9]: we would like to find a
randomized mapping Q : X → X̂ where X̂ ⊂ R is an out-
put discrete set of points and |X̂ | ≤ |X |. This requantization
mapping can be thought of as a channel Q(x̂|x) (conditional
probability distribution). Our goal is to pass Xn through this
channelQ to release a privatized and compressed version X̂n.
A channel Q is ε-locally differentially private[9, 10] if

max
(x,x̃,x̂)∈X×X×X̂

{
Q(x̂|x)
Q(x̂|x̃)

}
≤ eε. (1)

Local differential privacy implies that the distribution of the
output x̂ reveals limited information about the input symbol
x: for any other input x̃, the output under x̃ has a similar
distribution to that under x. Small ε means greater indistin-
guishability and hence less privacy risk; it characterizes the
false-alarm/missed-detection tradeoff for the hypothesis test
in guessing x from x̂ [11, 12].

As a concrete example to compare with Rastogi and
Nath [3], consider the problem of compressing a lowpass sig-
nal. As noted by Papadimitriou et al. [13], compressing time
series data requires that the signal class have a lower com-
plexity: examples include signals which are sparse in some
appropriately defined transform domain. Structured signal
classes allow for less privacy-preserving noise and hence
a huge utility improvement [3]. According to the composi-
tion theorem [14], if we guarantee ε-differential privacy in the
Fourier domain, the resulting time series after inverse discrete
Fourier transform (IDFT) will still be an ε-differentially pri-
vate version of the original time series. Although we focus on
privacy-preserving quantization of Fourier coefficients here,
our model extends to other low-complexity signal classes.

For a given privacy level ε, define the set of channels
which provides ε-local differential privacy by QLDP(ε) =
{Q(x̂|x) : (1) holds}. If the alphabet X̂ for each X̂i is smaller
thanX , then we can think of channelQ as both a privatization
mechanism and a compression mechanism. That is, suppose
each Xi is represented using R bits (|X | = 2R), and the
corresponding X̂i uses only R̂ bits (R̂ ≤ R, |X̂ | = 2R̂), then
we can define compression ratio ρ as

ρ =
R̂

R
=

log2|X̂ |
log2|X |

. (2)

Note that for a channel Q with predetermined size |X | × |X̂ |,
the compression ratio is also fixed.

A natural question is how to choose a particular Q ∈
QLDP(ε) to use. Due to utility requirement, we select a Q that
yields a small distortion between input and output sequences
with respect to a given distortion measure. Given a distortion
function d : X × X̂ → R+ defined on a symbol-by-symbol

basis, the distortion between two sequences Xn and X̂n is
the average of the per symbol distortions,

d(Xn, X̂n) =
1

n

n∑
i=1

d(Xi, X̂i). (3)

In order to minimize this average distortion, note that if Xn

is drawn i.i.d. from a distribution P , the expected distortion
(Xi, X̂i) ∼ P ×Q is

EP×Q[d(Xn, X̂n)] = EP×Q[d(X, X̂)] (4)

=
∑
xi,x̂i

P (xi)Q(x̂i|xi)d(xi, x̂i). (5)

To generalize this model, suppose Xi’s are drawn i.i.d. from
P which is unknown but known to be in the set of distribu-
tions P . Then the set of channels which yield expected dis-
tortion no greater than a target δ is defined by

QU(δ) =

{
Q(x̂|x) : max

P∈P
EP×Q[d(X, X̂)] ≤ δ

}
. (6)

Given P , compression ratio ρ and distortion constraint δ, the
optimal value of ε can be defined as

ε∗(P, ρ, δ) = min {ε : QLDP(ε) ∩QU(δ) 6= ∅} . (7)

In the next section, we will show that finding the channel Q
which yields the optimal value ε∗(P, ρ, δ) can be formulated
as a quasiconvex optimization problem, and can be solved us-
ing bisection method [15].

3. PRIVACY-COMPRESSION-UTILITY TRADEOFF

For a given compression ratio ρ and a distortion constraint δ,
the optimal privacy level ε∗ over P can be obtained according
to equation (7). By varying the pair (ρ, δ), we will arrive at a
privacy-compression-utility (ε-ρ-δ) tradeoff, which is of great
importance since it can serve as a basis for practical design
of privatization and compression mechanisms. However, two
main challenges arise here: (i) how to find the optimal output
alphabet X̂ without privacy violation and (ii) how to learn the
optimal channel Q that achieves ε∗(P, ρ, δ).

In general, (i) is challenging because the optimal set of re-
construction points depends on the private input data, which
could violate the privacy requirement. For the purposes of this
paper we assume that there is an auxiliary public data set from
the same distribution which can be used to learn the quantiza-
tion points using standard approaches (such as the Lloyd-Max
algorithm [16, 17]). We defer a detailed investigation of (i) to
the full version of this work.

Given a target output alphabet X̂ , now the problem (ii)
is how to find the optimal (|X | × |X̂ |)-dimensional channel
matrix Q that achieves ε∗(P, ρ, δ). According to (7), this is
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Fig. 1: Privacy-Compression-Utility Tradeoff

the same as minimizing ε over the set of channels QLDP(ε) ∩
QU(δ). Consider instead the following program:

minimize
Q

exp

(
max

(x,x̃,x̂)∈X×X×X̂

{
Q(x̂|x)
Q(x̂|x̃)

})
(8)

subject to max
P∈P

EP×Q[d(X, X̂)] ≤ δ, (9)

0 � Q � 1, (10)

Q · 1̂ = 1. (11)

where 1̂ and 1 are both all-ones column vectors with length-
|X̂ | and |X | respectively. The objective function is simply
minimizing eε, the worst-case ratio of pairs of conditionals.

Our main analytical result is to show that the program
above is quasiconvex.

Theorem 1. The program in (8)-(11) is a constrained quasi-
convex optimization problem.

Proof. We first show that the constraints (9)-(11) on the chan-
nel Q form a convex feasible set. Note that (10) and (11) sug-
gest the channel matrix Q to be right stochastic, which can be
easily shown to be a convex set since any convex combination
between two right stochastic matrices is still right stochastic,
i.e. for any Q1, Q2 satisfying (10) and (11), (θQ1 + (1 −
θ)Q2) · 1̂ = θQ1 · 1̂+ (1− θ)Q2 · 1̂ = 1,∀θ ∈ [0, 1]. Also,
based on (5), constraint (9) can be expressed as

max
P∈P

∑
(xi,x̂i)∈X×X̂

P (xi)Q(x̂i|xi)d(xi, x̂i) ≤ δ. (12)

Equivalently we can write this as∑
(xi,x̂i)∈X×X̂

P (xi)Q(x̂i|xi)d(xi, x̂i) ≤ δ, ∀P ∈ P, (13)

the intersection of a set of halfspaces in [0, 1]|X |×|X̂ |. There-
fore, the feasible set of Q is convex.

We next show that the objective function in (8) is quasi-
convex. Given QLDP(ε), we can minimize eε by minimizing

the left-hand side of (1) over Q ∈ QLDP(ε). This is convex
as a function of Q(x̂|x)/Q(x̂|x̃), since point-wise maximum
preserves convexity [15]. However, this doesn’t lead to con-
vexity in terms of Q. A single Q actually yields |X | × |X | ×
|X̂ | individual ratios Q(x̂|x)/Q(x̂|x̃). If we think of this as a
mapping from Q to a higher-dimensional array Q̂:

Q̂(i, j, s) =
Q(i, s)

Q(j, s)
=
I(i, :) ·Q · Î(:, s)
I(j, :) ·Q · Î(:, s)

, (14)

where I and Î are identity matrices of size |X | and |X̂ | re-
spectively, and 1 ≤ i, j ≤ |X |, 1 ≤ s ≤ |X̂ |. Then our
objective function is the same as

eε = max Q̂. (15)

To show its quasiconvexity, we need to show all the sublevel
sets Sα = {Q ∈ dom eε| eε ≤ α,∀α ∈ R} are convex, which
is trivial since eε ≤ α is equivalent to (I(i, :)−αI(j, :))·Q·Î(:
, s) ≤ 0 and hence is a (convex) halfspace.

Actually, we can see the objective function eε as a point-
wise maximum of linear fractional functions of Q. Therefore
the original problem in (8)-(11) is equivalent to a standard
generalized linear-fractional program, which can be solved
via the bisection method [15].

4. SIMULATION RESULTS

To illustrate our approach, we assumed a lowpass signal class
with 15 synthetic i.i.d. Fourier coefficients drawn accord-
ing to P = N (10, 2) but we optimize over the set P =
{N (µ, σ) : µ ∈ [8, 12], σ ∈ [1, 3]}. The initial quantiza-
tion was to R = 4 bits, and we found optimal Q matrices via
in (8)-(11) for alphabet sizes R̂ = 4, 3, 2, 1, or equivalently,
different compression ratios ρ = 1, 0.75, 0.5, 0.25 according
to (2). The distortion measure used in simulations is the mean
squared error (MSE): d(xn, x̂n) = 1

n‖x
n − x̂n‖22.

Figure 1 shows the minimum achievable privacy level
ε for a given utility constraint δ on MSE under different
compression ratios ρ. The standard privacy-utility tradeoff
is demonstrated for any fixed ρ: more randomness (larger δ)
guarantees lower privacy risk (smaller ε). Across different
ratios ρ, for small distortion the achievable ε are quite close;
this means we can halve the bit rate while guaranteeing nearly
the same level of privacy.

More importantly, randomized requantization has better
performance than naı̈ve differentially private perturbation
method, even for perturbation in the sparse Fourier transform
domain [3]. We include the latter method for comparison. In
Fig. (2a)-(2d), the red (lower) curves show the MSE versus
ε for our locally differentially private Q; the blue (upper)
curves show the same results from directly perturbing Fourier
coefficients and quantizing down to the same output rate R′.
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Fig. 2: Comparison between randomized requantization and standard perturbation method

We further carry out simulations when applying local
quantization to N = 20 users having different realizations of
the same signal and the goal is to estimate µ. Fig. (2e) and
(2f) show the MSE for each case with ε = 1, ρ = 0.5. As
the number of users N increases, the total “noise” added by
our locally differentially privateQ (lower red curve) increases
much slower than direct perturbation (upper blue curve) when
summing local signals and actually decreases when averag-
ing. Again, in both applications, randomized requantization
demonstrates better scalability with the network size.

5. DISCUSSION AND FUTURE WORK

In this paper, we proposed a novel randomized requantiza-
tion mechanism and empirically showed its effectiveness for
joint data privatization and compression while satisfying util-
ity. For low distortion, the achievable ε values are similar,
allowing us to control and reduce the storage/bandwidth of
sensor nodes. We believe that this approach shows that for
IoT systems of sensor nodes, individual sensors can simulta-
neously reduce their data while ensuring privacy. For a fixed
distortion, sensors can trade off bandwidth and privacy, or
they can trade off privacy and accuracy at a fixed bandwidth;
this approach may also have larger system implications.

There are several major challenges to address to under-
stand these tradeoffs. First, although eε is quasiconvex, for
high bitrates the optimization may become infeasible due to
the high dimension of Q: going from 8 bits to 4 bits would
result in a 2048-dimensional problem. Structural results can
be helpful here: for low distortion the support of output distri-
bution may be reduced. Optimizing over X̂ may yield a mod-
ified Lloyd-Max algorithm to alternate between choosing X̂
and Q. Although we motivated this approach and provided a
simulation of privately compressing lowpass Fourier signals,
we claim that this can hold for many sparse or low-complexity
signal classes, provided that the sparse representation lies in
a common subspace. For more complex models such as com-
pressed sensing or dictionary learning, the sparsity pattern it-
self may require privacy protection, in which case approaches
from differentially private LASSO [18] may complement the
approach here.

Differential privacy gives strong guarantees on the indi-
vidual identifiability of single samples in the underlying sig-
nals. However, it is unclear if meaningful values of ε are
possible in all parameter ranges. Understanding the limits
of differentially private data sharing will shed light on how
and where privacy guarantees should be made for ubiquitous
monitoring networks.
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