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ABSTRACT

We propose in this paper a low-rank and sparse decomposi-
tion based image hashing algorithm, aiming to summarize the
structural information and sparse salient components of dig-
ital image to compact digest. More specifically, we leverage
compressive sampling and random projection to separately
aggregate the low-rank approximation of input image and the
spatial layout of salient components into binary hash. Owing
to its capability of capturing and fusing intrinsic visual char-
acteristics, the proposed work demonstrates high robustness
and discriminability. As observed in content identification
experiments, it shows much higher accuracy than state-of-the-
art algorithms. Furthermore, we also analytically evaluate the
security of the proposed hashing algorithm using the entropy
based metric, and its performance in content identification is
analyzed using the channel coding theorem.

Index Terms— Content identification, low-rank and
sparse decomposition, performance analysis, robust hash-
ing.

1. INTRODUCTION

Robust image hashing is a one-way mapping from digital im-
age to a succinct digest, and it was proposed as an alternative
to cryptographic hashing. As an effective tool for integrity
verification, cryptographic hashing is highly sensitive to the
variation on message. A single bit modification on source
message could incur drastic changes in output hash. How-
ever, what the human visual system assimilates from an im-
age are its perceptual characteristics, and the changes on digi-
tal representation do not necessarily affects the visual appear-
ance of an image. Accordingly, the hashing function for im-
age needs to tolerant content-preserving distortions, and hash
values should be computed on the basis of perceptual con-
tents. Despite of its robustness, robust hashing function also
inherits the collision-free property of cryptographic hashing.
It is desired that the hash strings of perceptually irrelevant im-
ages are statistically independent, and the capability of robust
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hashing in distinguishing between distinct images is termed
as discriminability.

Robust hashing has found extensive applications in copy
detection, visual searching, content tracking, authentication,
etc. In particular, since it can make a succinct and informa-
tive representation of perceptual contents, robust hashing has
become a competing solution for reliable and efficient con-
tent identification. Recently, some content-sharing sites, like
YouTube, have resorted to robust hashing to detect unautho-
rized uploading of copyrighted contents. In general, most
existing robust hashing algorithms have a feature extraction
component followed by a quantizer that encodes features to
fix-length hash. Some commonly used features include statis-
tics [1–3], frequency-domain coefficients [4–6], matrix in-
variance [7, 8] and key points [9, 10]. Feature quantizer aims
to reduce the redundancies in features while balancing the ro-
bustness and discriminability of resulting hash. In Mıhçak et
al.’s pioneering work [11], features are encoded to hash us-
ing a randomized Lloyd-Max quantizer. In [12], we proposed
a dithered lattice vector quantizer for image hashing, and our
comparative studies corroborate that multi-dimensional quan-
tizer can tolerant a higher degree of distortions than scalar
ones. Monga et al. formulated feature quantization as an op-
timization problem and developed a clustering based quan-
tizer [13]. Similarly, the work in [14] leverages spectral em-
bedding to achieve the optimal balance between robustness
and discriminability. In addition to algorithm design, some
theoretical studies on the performance of robust hashing have
been reported in the literature. Varna et al. leveraged the
game theory to examine the strategic interaction between al-
gorithm designer and an adversary trying to fool the content
identification system [16]. In [17], the random projection
based hashing is formulated as a communication model, and a
side information assisted hashing algorithm is proposed. The
work in [18] establishes the connection between content iden-
tification and list decoder, and the error bounds and maximum
achievable rate of content identification are derived.

In this paper, we develop a robust hashing algorithm for
content identification. By decomposing digital image into
low-rank and sparse terms, the proposed algorithm learns vi-
sual features from both the principle structures and salient
components of an image. Moreover, we also investigate its
security and content identification performance from the per-
spective of information theory. Experimental results demon-
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strate the superiorities of our work to competing hashing al-
gorithms.

The rest of this paper is organized as follow. In Section 2,
we describe the proposed image hashing algorithm in detail.
Analytical studies are presented in Section 3. Section 4 re-
ports the results of comparative experiments, and conclusions
are drawn in the final section.

2. LOW-RANK AND SPARSE DECOMPOSITION
BASED IMAGE HASHING

Image hash is desired to capture the intrinsic characteristics
of digital image. The research on machine learning reveals
that an original image and its perceptually similar versions
span a low-dimensional subspace [19]. Thus, estimating the
subspace helps hashing algorithm learn the intrinsic and sta-
ble image features. On the other hand, hash values should
also represent the unique visual characteristics that can best
distinguish an image from others. The layout of salient re-
gions is one of the most distinctive visual characteristics. The
formation of salient regions is the consequence of the visual
attention mechanism. Confronted with overwhelming amount
of information sensed by vision system, human brain first se-
lectively processes a small fraction of most important visual
stimuli. Salient regions are those win the competition for the
priorities of information processing [20]; hence, they tend to
be very sparse and show remarkable contrast with neighbors.

In light of the aforementioned facts, we propose to com-
pute robust hash from both the low-rank and sparse salient
components of an image. We first smooth the input image
using a Gaussian low-pass filter and then resize it to N ×N .
The proposed algorithm decomposes the pre-processed image
I ∈ RN×N as the sum of low-rank and sparse terms [21]. In
(1), the low-rank matrix L captures the principle structures of
I , and S is a sparse matrix representing salient components:

min
L,S

Rank(L) + λ‖S‖0
s.t. I = L + S,

(1)

where ‖·‖0 denotes the l0 norm, and λ is a const. We solve
(1) by the inexact augmented Lagrange multipliers (IALM)
based algorithm proposed in [21]. Fig.1 shows the decompo-
sition results of a testing image. Apparently, L depicts the
coarse structures of I , while S provides a sparse represen-
tation of salient regions. To identify the most salient parts,
we binarize S by setting the top 10% elements with largest
absolute values to one. However, it is worth noting that the
binarized S still contains some unstable patterns that may not
survive content-preserving manipulations. The unstable pat-
terns appear as isolated noise-like spots, as can be seen from
Fig.1(c). Based on this observation, we refine S using the
following morphological operations:

S = (S �E)�E, (2)

Fig. 1. Low-rank and sparse decomposition of an image. (a)
original image, (b) low-rank component, (c) binarized sparse
component.

where � and � denote the erosion and dilation operations,
representatively, and E is the 2×2 square structuring element.

Hash values are generated by mapping L and S to binary
bits. Despite of its low-rank, L is not free of redundancy.
To meet the compactness requirement of robust hashing, the
proposed algorithm utilizes random compressive sampling
(RCS) [22] to encode L to a short measurement vector:

m = U




D
. . .

D


 v, (3)

where v ∈ RN2×1 is the vectorization of L ∈ RN×N , with
its elements randomly permuted, D ∈ RW×W is the W -point
DCT matrix, and U ∈ {0, 1}K×N2

is a binary matrix that
randomly samples K elements from a vector of length N2,
(K ¿ N2). The permutation and sampling processes are
controlled by a secret key. As will be discussed later, the
RCS process not only reduces redundancies, but also endows
robust hashing with the security against forgery attack. Af-
ter RCS, the first K hash bits {b1, · · · , bK} are generated by
comparing the elements of m ∈ RK with zero:

bi =
{

1 if mi > 0,
0 otherwise. i = 1, · · · ,K. (4)

To describe the layout of salient regions, we compute the
distances from each non-zero element in S to image center,
based on which a 16-bin distance histogram h ∈ R16×1 is
constructed. The histogram is then projected onto a matrix
P ∈ RQ×16 (Q < 16) whose elements are randomly drawn
from the normal distribution N (0, 1). As in (4), the vector
Ph ∈ RQ×1 is binarized to Q bits via thresholding. Finally,
the (K + Q) binary bits generated by L and S are concate-
nated to form the hash string of input image. To summary,
Fig.2 presents the flowchart of the hash computation process.

3. INFORMATION-THEORY BASED
PERFORMANCE ANALYSIS

3.1. Randomness analysis

The security of hashing algorithm against forgery attack is
determined by its amount of randomness. In this subsec-
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Fig. 2. Flowchart of the proposed algorithm.

tion, we analyze the security of our algorithm by quantify-
ing its randomness using the entropy based metric proposed
in [4]. Randomness of the proposed algorithm is introduced
by the following processes: permutating the elements of L ∈
RN×N , sampling K DCT coefficients from N2 coefficients,
and projecting the distance histogram onto Q random direc-
tions. Given L, there are N2! permutations and CK

N2 com-
binations. Note that permutation and sub-sampling are inde-
pendently conducted, so the probability that a specific mea-
surement vector m being observed is (N2!CK

N2)−1, and the
entropy of the RCS process is:

H(m|L) = log2(N
2!) + log2(C

K
N2). (5)

In this work, we chose N = 128 and K = 80. Even though
an adversary can assess to L, the probability of correctly esti-
mating m without the knowledge of the exact key is less than
10−200. We now analyze the entropy of the random projec-
tion of distance histogram. Let us consider the j-th projection
value (1 ≤ j ≤ Q), pjh, where pj is the j-th row of P . Since
the elements of pj follow the standard normal distribution, it
is easy to verify that pjh ∼ N (0, ‖h‖22) and its conditional
entropy is:

H(pjh|h) =
1
2

log2(2πe‖h‖22). (6)

The projection value, pjh, is then binarized to hash bit, bK+j ,
by comparing it with zero. As discussed above, pjh fol-
lows zero mean normal distribution, so the resulting binary
bit is uniformly distributed in {0, 1}: Pr(bK+j = 0|h) =
Pr(bK+j = 1|h) = 1

2 . Recall that projection directions
are independently generated, the conditional entropy of the
Q hash bits generated by h is

H(bK+1, · · · , bK+Q|h) =
Q∑

j=1

H(bK+j |h) = 2Q. (7)

As (7) shows, the random projection and binarization schemes
can maximize the randomness of output hash.

3.2. Content identification performance analysis

In the following, we analyze the content identification perfor-
mance of the proposed algorithm from the information theory
perspective. Similar to [17], we first model robust hash-

ing based content identification as the communication over
noisy channel. Consider a database of W reference images,
the indices {1, · · · ,W} form the message set in commu-
nication. Without loss of generality, we consider n-length
hash: b(n) = {b1, · · · , bn} ∈ {0, 1}n. Each image in this
database is represented by a hash string, and this process can
be modeled as an encoder: E (·) : {1, · · · ,M} → {0, 1}n.
More specifically, the hash string of the i-th reference im-
age serves as the codeword of the symbol i. Given a query
image, content identification system compares its hash string
y(n) with those in database to determine whether it is per-
ceptually similar to any reference image. Denote the hash
string of query image by y(n), then the content identifica-
tion process is equivalent to the channel decoding stage:
D(·) : {0, 1}n → {1, · · · ,M,Ø}1. Accordingly, the error of
content identification can be measured by

Pe =
1
M

M∑

i=1

Pr(D(y(n)) 6= i|b(n) = E (i)). (8)

Since the hash string computed by the proposed algorithm
is bit-wise independent, the channel transition probability
obeys:

p(y(n)|b(n)) =
n∏

i=1

p(yi|bi), (9)

Assume that content-preserving distortions flip each hash bit
with equal probability, i.e. p(yi|bi) = p, the analytical model
can be viewed as a binary symmetric channel whose capacity
is:

C = maxI(bi; yi) = 1− p. (10)

The capacity is achieved when hash bits are independently
and uniformly distributed in {0, 1}n. According to the chan-
nel coding theorem and the Fano’s inequality [23], we can
derive the following performance bound:

(1− Pe)log2M ≤ 1 + nC. (11)

By estimating p and substituting (10) into (11), we can get
the relationship between error rate Pe, hash length N and
database size M .

1Ø corresponds to the case that the query is not perceptually similar to
any reference image.
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4. EXPERIMENTAL RESULTS

The testing database in content identification experiments was
composed of 2,000 reference images and 134,000 distorted
images generated by a variety of content-preserving manip-
ulations (as listed Table 1). The parameter settings of the
proposed algorithm are as follows: N = 128, W = 32
K = 80, Q = 10 and λ = 1/

√
128. The proposed work

was compared with four representative image hashing algo-
rithms: the sparse coding based hashing (SC) [15], the Gabor
filtering and dithered lattice vector quantization based hash-
ing (GF-DLVQ) [12], the nonnegative matrix factorization
(NMF) based hashing [7], and the ring-partition and NMF
based hashing (Ring-NMF) [8].

Table 1. CONTENT-PRESERVING MANIPULATIONS
Manipulation Strength

JPEG Compression Quality factor ∈ [1, 95]

Circular Filtering Radius ∈ [1, 3]

Median Filtering Filter size ∈ [2, 20]

Gaussian Noise Zero mean, variance ∈ [0.1, 1]

Speckle Noise Zero mean, variance ∈ [0.01, 0.3]

Rotation+Cropping θ ∈ [1, 10]

Histogram Equalization Number of gray levels ∈ [8, 224]

Gamma Correction γ ∈ [0.55, 1.45]

The proposed work, SC and GF-DLVQ are all binary
hashing algorithms, so the normalized hamming distance was
adopted to measure the similarity between hash strings. For
NMF and Ring-NMF that output real-valued hash, we use the
l2 norm and correlation coefficient based distance metrics,
as suggested in [7] and [8], respectively. Fig.3 shows the re-
ceiver operating characteristic (ROC) curves of these hashing
algorithms with the false rejection rate (FRR) in logarithmic
scale, and their F1 scores are listed in Table 2 to make a quan-
titative comparison on accuracy. The proposed algorithm and
SC have the highest F1 score. However, as can be seen from
Fig.3, the proposed algorithm outperforms SC in the region
with low false rejection rate (FRR). Hence, it is more suitable
for the applications that have stringent requirement on FRR,
such as digital right management. It is obvious from Fig.3 and
Table 2 that the proposed algorithm demonstrates notable su-
periority over NMF and Ring-NMF. As mentioned in Section
2, a part of hash bits are generated from the low-rank rep-
resentation of input image. Similarly, NMF and Ring-NMF
aggregates the low-rank and non-negative matrix factors of
input image into hash values. However, it should be noted
that the our work further applies random compressive sam-
pling (RCS) on the low-rank term L. RCS can preserve the
most stable components of L while reducing its redundances;
hence, the measurement vector generated by RCS is more ro-
bust than the matrix factors decomposed by NMF. Moreover,
our algorithm also combines the salient information of input
image, making output hash more discriminative. Aside from

Fig. 3. ROC curves.

its high accuracy, the proposed work also outperforms other
algorithms in terms of compactness (the length of output hash
is 90 bits, as shown in Table 3).

Table 2. COMPARISON ON F1 SCORE
Proposed SC GF-DLVQ NMF Ring-NMF
0.9888 0.9888 0.9221 0.8652 0.9065

Table 3. COMPARISON ON HASH LENGTH
Proposed SC GF-DLVQ NMF Ring-NMF

90 90 120 64 real 64 real
bits bits bits numbers numbers

In Section 3.2, we have analyzed the performance of bi-
nary hashing algorithm in content identification and shown
that the performance bound depends on the probability of bit
flipping. We estimated this probability from the hash strings
of 134,000 pairs of original and distorted images, the result of
which shows p = 0.0549. Accordingly, the channel capacity
is C = 0.9451.

5. CONCLUSIONS

We have proposed a low-rank and sparse decomposition
based image hashing algorithm. The high robustness, dis-
criminability and compactness of the proposed algorithm can
be attributed to the following reasons: 1) the low-rank and
sparsity constrains enable hashing algorithm to simultane-
ously capture the structural information and salient compo-
nents of input image; 2) the compressive sampling process
can provide a compact, stable and secure representation of the
low-rank term; 3) incorporating the layout of salient regions
in hash results in higher discriminability.
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