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ABSTRACT

In the recent years a large number of methods have been proposed
in order to reliably embed information into audio files. Despite their
increased robustness against attacks, they tend to have a lot of re-
dundancy due to a large number of bits used for majority voting due
to disability to correctly select regions that are unlikely to be dis-
torted by attacks. To overcome this, we propose a robust method
for audio watermarking where Empirical Mode Decomposition and
beat detection are used for detecting the locations for embedding the
watermark. In order to find the embedding locations, we use a sim-
plified psychoacoustic model to split the input into audible frequency
bands and two phase comb filtering on those bands to find the beat
metrical structure. Then, at each embedding location, we take sev-
eral frames and decompose them into Intrinsic Mode Functions. In
an extensive test, we show promising results on a selection of songs
spanning over three musical genres.

Index Terms— audio watermarking, beat tracking, empirical
mode decomposition, intrinsic mode function, beat detection

1. INTRODUCTION

Digital Audio Watermarking has received great interest over the last
years due to the lack of methods to prove ownership over audio con-
tent. A good audio watermarking technique should satisfy two core
functionalities: the watermark should be imperceptible by the Hu-
man Auditory System (HAS) and robust against attacks. Attacks
can be split into two categories: Deliberate or malicious attacks and
unintended or non-malicious attacks [1]. Malicious attacks are cre-
ated by ‘pirates’ in order to distort the audio watermark so that there
will be no trace of the distribution of the audio. These attacks are
done, e. g., by cropping the audio, by executing geometric alteration
or simply by applying some other form of alteration. Non-malicious
attacks are the ones that are executed by mistake when the holder of
the audio does some form of processing over the audio such as com-
pression, filtering, time stretching, etc. It should be observed that,
these methods can be used also for intentional malicious attacks. As
a consequence, a watermark should be prone against such simple
‘attacks’ that can occur (even) by mistake. Looking at the state of
the art in methods for audio watermarking, one already finds algo-
rithms providing substantial robustness and efficiency. For example,
the algorithm presented in [2] manages to include the watermark in
the audio signal while reaching a considerable data payload, high
resiliency against attacks and at the same time the watermark re-
mains inaudible. However, looking at Fig. 1 we can see that the last
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Intrinsic Mode Function (IMF) of a signal is quite altered by com-
pression (in this case 128 kbs mp3 compression), which inspired us
to use a lower IMF in this work. Another interesting idea is the use
of the floor function in the embedding of the watermark. On a neg-
ative number, this will not have a similar behaviour as on a positive
number leading to potential inconsistency. Considering the thresh-
old used, this could easily produce values for the samples that are
smaller than the minimum sample value allowed. There are further
very mature methods for audio watermarking, such as [3], which
uses spread-spectrum. Yet, its data payload is rather limited. Fur-
ther promising approaches to audio watermarking include usage of
the wavelets domain [4, 5], or phase coding and related techniques
[1, 6, 7]. Overall, a popular classification of watermarks is as fol-
lows: algorithms operating in the time domain, transform domain,
compressed domain, and combined domain audio watermarking.

In this paper we propose a novel robust method in the time do-
main using Empirical Mode Decomposition (EMD) which has been
used, e. g., in [8]. EMD is a method for analysing non-stationary
signals in a totally adaptive way [9]. The technique breaks a signal
down into IMFs: These are nearly orthogonal functions with zero-
mean. The decomposition has a finite number of modes depending
entirely on the data. After decomposing a signal, it can be easily re-
constructed from the IMFs, by adding them up as in (1), where S(t)
is the signal, IMFi is the i-th IMF function, and r represents the
residual.

S(t) =

n∑
i=1

IMFi(t) + r(t). (1)

An important characteristic of this decomposition is that the
number of maxima and minima decreases with the order of each
mode and that the high frequency modes (lower order IMFs) keep
the same maxima and minima even after being attacked. We can
observe this in Fig. 1 where in a) we see the difference between an
original signal and the signal after compression and in b) we can see
the minima and maxima of the first IMF of the signal before and
after being compressed. In Fig. 1 we can observe that, the extreme
points are entirely distorted for the second and third (last) IMFs.

2. PROPOSED WATERMARKING ALGORITHM

The idea of our proposed algorithm is to embed the watermark at
locations that are less likely to be attacked by techniques such as
‘mp3’ or similar compression. This leads to content-based audio
watermarking [10, 11, 12]. These parts of the songs usually co-
incide with the beat locations that contain low frequencies which
mask other sounds. Considering beat detection in the context of wa-
termarking has been considered in [13], albeit in other ways. Our
algorithm will first identify according beat positions and then take
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Fig. 1. Distortion created by 128 kbs mp3 compression over 64 samples frame from The Saturdays – Gentleman illustrated over the samples’
amplitudes and over the first to third (last) IMF of the EMD (left to right).

20 frames of 64 samples at each beat location. The number of 64
samples was chosen, since they have 15–20 extreme points. We will
use these extreme points of each frame for majority voting for one
bit. We take 20 frames because we will have 1 280 (=20·64) samples
at each beat location. Considering 44.1 kHz PCM WAV files, this
number of samples represents just under 30 ms and it is less than
half a length of a drum beat. So even if there is a slight error of an
automatic detector of the beats, we can still make sure we will re-
main in the beat region with the watermark embedding. Afterwards,
we take each frame, analyse it by EMD, and embed the watermark at
the extreme position of the first IMF. For embedding the watermark,
we use a Quantisation Index Modulation (QIM) technique [14] since
it has good robustness against attacks and it can be used blindly to
detect the watermark. In order to decode the watermark, we will use
EMD as well and we will threshold the extreme points to see whether
they represent a ‘1’ or a ‘0’. Before arriving at the method presented
here for including the watermark in the audio described in section
2.2, a number of variations have been tested. An initially promising
one among these was to include the watermark at the extreme points
of the first IMF by modifying the sample of the signal which was an
extreme point for the first IMF. By lowering or increasing its value,
depending on whether the sample was a minimum or a maximum,
we were ensuring to keep the same extreme points. Even though the
watermark had good resiliency agains attacks, this method was sig-
nificantly altering the wave form of the signal. Therefore, the audio
quality of the watermarked signal was not very good and the water-
mark was highly perceptible. Our final approach is based on this, but
it modifies all the samples from the frame in order to keep a similar
wave form for the signal and to keep the distortion of the audio to a
minimum possible.

2.1. Finding the beat locations

The algorithm for finding the beat locations requires tempo indepen-
dent information about the song’s rhythmic structure. For this, it is
necessary to find the song’s beat tempo reliably. The approach used
relies solemnly on finding multiple tempos in a song and compar-
ing how well they resonate with the song. There are mainly three
different approaches for tempo detection: using correlation meth-
ods, detecting note onsets and then finding the most common inter-
onset interval (IOI), and a multiple resonator approach – usually with
comb filters. Our tempo extraction falls into the third category, as
we require a larger tempo search range, which implies computing
more comb filters. Thus, the method relies merely on finding a base
tempo called Tatum, and analysing how well integer multiples of this
Tatum resonate with a large part of the song. The Tatum thereby cor-
responds to a tempo of at least the beat tempo or higher. In a later
stage of the algorithm, after the beat tempo is known, it is possible to
find the correct phase of the beats, by looking at the filter output and

Table 1. Pseudocode for embedding the watermark
method embed(int beatLocation) {

// we use 20 frames
for i = 1 to 20 {

// get i-th frame from beatLocation
frame = getFrame(beatLocation, i);
// decompose the signal via EMD
emd = emdDecomposition(frame);
// get first IMF
imf1 = getIMF(end, 1);
// 64 samples in each frame
for j = 1 to 64 {

if(extremumPoint(imf1, j)) {
// calculate new extremum value by (1)
newEx = NewEx(frame[j], Threshold);
// calculate the difference by (2)
difference = newEx - frame[i];
// update the same sign neighbours (3)
l = j;
while(sign(frame[l]) == sign(frame[j]) && l > 0) {

frame[l]+ =difference; l −−;}
r = j + 1;
while(sign(frame[l]) == sign(frame(j) && r < 63) {

frame[r]+ =difference; r ++;}}}}}

tracking the phase over the whole song to sort out errors. A more
explicit description can be found in [15], [16], and [17].

2.2. Embedding the watermarks at a specific beat location

As mentioned, at each beat location we will embed a watermark in
each of the 20 frames. So in each frame (64 samples) we will embed
the same watermark at each extremum position in order to later use
this for majority voting. This will enable us to include around 40 –
50 bits per second in a song, depending on the tempo of the song.
Accordingly, the algorithm is sketched as:

1. At each beat location get 20 frames
2. Foreach frame compute EMD and get the first IMF
3. At each extremum of the first IMF calculate the following:

S∗ =

{
rnd(S(t)/T ) ∗ T + sgn(3 ∗ T/4) if wi ≡ 1

rnd(S(t)/T ) ∗ T + sgn(T/4) if wi ≡ 0.

(2)
Difference = S∗ − S(t), (3)

where S(t) is the original signal, and at sample t there is an
extreme point in the first IMF, S∗ is the value of the extreme
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Fig. 2. Comparison of the amplitude of the original and 0-
watermarked signal (left) and the amplitude of the original and 0-
watermarked first IMF (right) using a 64 sample frame from Disclo-
sure feat. Eliza Doolittle – You & Me.

point the watermarked signal should have, T is a threshold
specified in order to allow for the balance between inaudi-
bility and reliability, rnd represents the floor function if the
point is a maximum point for the first IMF, or ceil if the point
is a minimum point. sgn is the sign function, that is ‘+’ if the
point is a maximum and ‘-’ if the point is a minimum, and wi

is the watermark for the particular frame.
4. for sample t and all neighbours of sample t that have the same

sign apply the following

S(p)∗ = S(p) +Difference. (4)

The last step is needed to ensure that the audio frame keeps a
similar audio wave as the original signal. In Fig. 2 we can see the
difference between the original and the watermark frame from Dis-
closure feat. Eliza Doolittle – You & Me. We see that, even at this
scale there is a small difference between the original and the water-
marked signal. However, considering that the values of the audio
samples can range between -32 768 and 32 767, the actual difference
between the original signal and the watermarked one is very small.
In order to allow for a better understanding of the watermarking em-
bedding technique, the pseudocode is shown in Listing 1.

2.3. Watermark Extraction

In order to extract the watermark, we first have to reliable identify the
beat positions. After beat detection, we identify the frames, analyse
them using EMD, and threshold them in order to identify the water-
mark. Accordingly, one executes as follows:

1. identify the beat location
2. foreach beat location select the 20 frames
3. foreach frame, find all extremum points and calculate D(t):

D(t) =

{
S(t)− dS(t)/T e ∗ T if minimum

S(t)− bS(t)/T c ∗ T if maximum,
(5)

where S(t) is the original signal, at sample t there is an ex-
treme point in first IMF, and T is the same threshold used in
the embedding for the particular frame.

4. foreach frame use D(t) to calculate wi, the watermark at an
extremum, which will vote for the watermark bit of the frame

wi =


1 if maximum and D(t) > T/2

1 if minimum and D(t) < −T/2
0 if maximum and D(t) < T/2

0 if minimum and D(t) > −T/2,

(6)

where wi is the watermark of an extremum of the frame.

Table 2. ODG scale

Impairment description ODG
Imperceptible 0
Perceptible, but not annoying -1
Slightly annoying -2
Annoying -3
Very annoying -4

Fig. 3. 11 x 11 bit watermark as embedded in our experiments
(0000010000000001110000...)

3. PERFORMANCE ANALYSIS

The performances of any audio watermarking technique should be
analysed based on the imperceptibility of the audio watermark, on
the capability of the watermark to resist against attacks, and on the
data payload. In this sense, we will measure the performance against
attacks by using Bit Error Rate (BER) [18] and Normalised cross-
Correlation (NC) as defined in (7) and (8). A low BER indicates an
accurate detection mechanism for the watermark, and a high NC (the
maximum being 1) shows a high similarity between the embedded
and extracted watermark.

BER(W,W ′) =

∑N
i=0 W (i)

⊕
W ′(i)

N
(7)

NC(W,W ′) =

∑N
i=0 W (i) ∗W ′(i)√∑N

i=0 W (i)2 ∗
√∑N

i=0 W
′(i)2

. (8)

In (7) and (8), W and W ′ represent the watermark embedded
in the audio and the watermark extracted from the audio, and N is
the length of the watermark. For measuring the audio quality of the
watermarked audio signal, a range of options such as PEAQ are used
[19]. We decided for two popular and relevant measures: Signal to
Noise Ratio (SNR) and Objective Difference Grade (ODG). SNR
is defined as the ratio of signal power over the noise power and is
measured in dB. The International Federation of the Photographic
Industry (IFPI) recommends for a good audio watermarking tech-
nique an SNR greater than 20 dB. The ODG is a subjective quality
assessment of the audio by human perception. They grade the im-
perceptibility of the watermark based on the scale defined in Table
2. Data payload measures how much information can be embedded
in the audio in a second. This measure will vary for the proposed
method depending on the tempo, and it will be compared to other
watermarking techniques in the following section.

4. RESULTS

We will now consider the performance of our novel watermarking
technique against a number of typical attacks. The watermark em-
bedded in the audio files is a 121 bit sequence that is an 11 x 11 rep-
resentation of Fig. 3. Since we do not only measure the resistance
against attacks, but also audio quality and data payload, we had to
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Table 3. Average BER(%) against common attacks for all, and the Pop, EDM, and Jazz songs

Genre ALL POP EDM JAZZ ALL POP EDM JAZZ
SNR ODG

Original 27.5 28.0 28.2 26.3 -0.35 -0.18 -0.27 -0.60
BER(%) NC

128 kbs MP3 3.8 2.5 3.5 5.4 0.92 0.95 0.93 0.89
96 kbs MP3 9.8 7.4 12.5 9.6 0.79 0.85 0.75 0.76
Resampling 7.5 5.0 11.1 6.4 0.85 0.90 0.79 0.86
Adding WGN 6.8 7.3 4.3 8.9 0.85 0.83 0.91 0.80

choose a threshold (1 000) that keeps a balance between all these fac-
tors. Having in mind that we use 44.1 kHz 16 bit PCM WAV audio
files and that the samples can range between -32768 to 32767, alter-
ing the high frequencies on average only by +/-500 will not induce
high audio corruption. In Table 3 one can find in the Audio Quality
line the SNR ratio and the ODG value for Pop, Jazz, and Electronic
Dance Music (EDM). Few efforts are so far made as in [20] to pro-
vide standardised song sets for comparison. Our results resemble av-
erages over ten recent songs per considered genre1. From the results,
the technique performs well on samples that have the tempo given by
a drum beat or a snare drum. Having an ODG value between Imper-
ceptible and Perceptible but not annoying, our technique passes the
perceptibility test with good results. Note that, the technique embeds
the watermark in the higher frequencies at beat locations. Therefore,
it will enhance most of the high frequencies at these positions; and,
if there is a predominant sound only with low frequencies, such as a
drum beat intro for an EDM song, the watermark will be perceptible
in this section, but usually not in an annoying way. However, as soon
as the song ‘drops in’, and other instruments appear as well, the wa-
termark becomes imperceptible. When measuring the ODG for each
song, we took a measurement for each 10 seconds of the song and
averaged that over the whole song. Otherwise, if voting straight for
the whole song, the ODG will be close to 0 for all our tests. The
high values of SNR are obtained as we only slightly modify the au-
dio file. We use a threshold such that we maintain a good quality
of the audio file. Therefore, we will not introduce significant noise.
When measuring the SNR value, we took into account only such
frames that were watermarked. If we were considering all frames
from the audio file, the values of the SNR would have been signif-
icantly higher, but it would not show the actual difference between
the original signal and altered signal.

Line 128 kbs of Table 3 shows how the audio watermarking tech-
nique proposed performs against 128 kbs mp3 compression attacks.
128 kbs is the current (lower) mp3 de-facto standard used in the dis-
tribution of (music) audio. For all our tests we give the BER and the
NC for our novel watermark.

Line 96 kbs of Table 3 gives the BER and NC for a 96 kbs mp3
compression attack. Since this attack uses a higher compression rate
than the 128 kbs one, one expects a (small) increase in the average
BER. In the line Resampling, we measured the BER and NC against
resampling attacks. In this attack, a 44.1 kHz signal is re-sampled at
20.5 kHz and then back to 44.1 kHz. Finally, we measured resilience
against adding White Gaussian Noise (WGN) for an SNR of 30 dB
as given in line AWGN.

To give a better idea on how well the watermarking technique
performs across different genres against the above mentioned at-
tacks, Table 3 also gives the average BER and NC for all attacks
across genres.

1For comparison, the list of these is found at www.openaudio.eu.

From Table 3, we see fairly good results, but to set these into
relation, techniques such in [2] and [21] can be considered. In these
papers, lower BERs are reported for the same attacks, albeit con-
sidering only Pop or piano pieces. Data payload for our proposed
watermarking techniques is 40 – 50 bits/s depending on the tempo of
the song. This is similar to related techniques, such as in [4] which
has a payload of 45.9, or the one described in [2] which has a pay-
load of 46.9 – 50.3 bits/s. Mainly the technique presented in [21]
achieves highly competitive results at 128 bits/s. Our payload can
be obtained from ensuring that the locations used for embedding are
not often altered by attacks.

5. CONCLUSION

We proposed a novel method for audio watermarking based on
EMD. We used Neuronal Networks in order to find locations with
high energy (beat locations) and then embedded 20 bits at each
of these locations. From the experiments made, we observe good
results against the de-facto internet standard of 128 kbs mp3 com-
pression. Having an average BER of 2.5 % for Pop Music, 3.5 % for
EDM, and 5.4 % for Jazz music, we find pronounced genre effects.
This might be owed to the fact that, the beat detector is (data-
)trained for a specific genre and thus might not identify reliably the
beat positions of other genres. Therefore, it seems reasonable to
train it individually for each particular type of music when used for
embedding and extracting the beat locations. We measured good
results against further common attacks. The average BER against
resampling was 7.5 %, and the average BER against adding WGN
was 7.7%.

Despite this Audio Watermarking technique maintaining fairly
good performance against attacks, there are a number of improve-
ments from which it could benefit. The usage of the beat detector is
very effective in choosing the locations for embedding, but it might
be a bottleneck for the extraction process. In order to reliably extract
the same watermark, we need to reliably identify the same samples
for extraction. If the audio is attacked using time scale modification,
such as tempo variation, the beat detector might occasionally be in-
efficient in detecting the correct sample for extraction. Likewise, it
seems interesting to measure whether better results can be achieved
using a synchronisation code [2] at the embedding locations before
the watermark. Accordingly, one can be certain to search at the cor-
rect positions for extraction. This would increase the complexity
for the watermark extraction, and lower the data payload, but might
increase the resilience against attacks such as high pass filtering and
time stretching. Finally, to increase data payload, more general onset
positions could be identified by onset detection as in [22].
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