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ABSTRACT 
 

Gabor-based region covariance matrix (GRCM) has been 

demonstrated as a promising descriptor for face recognition. 

However, GRCM requires large number of filters to achieve 

satisfactory performance. Furthermore, complex-valued Gabor 

filters require double convolution operations for each filter that 

makes the computation more expensive. To alleviate the problem, 

we propose to adopt real-valued discrete cosine transform (DCT) 

as filter bank in place of complex-valued Gabor filter. DCT as an 

orthogonal transform however decorrelates the signal, leads to 

most energies fall into the diagonal entries of the constructed 

covariance matrix, which is ill-formed for RCM. We demonstrate 

that applying non-linear operation on the DCT filter responses 

ameliorates the decorrelated filter responses effects. Apart from 

that, while RCM offers spatial information that is useful for 

recognition tasks, overly small RCM region renders poor 

covariance estimation, which can affect the recognition 

performance drastically. In this paper we also propose Log-

TiedRank to mitigate the potential undersampling effect suffered 

by covariance matrix estimation. From the experiments Log-

TiedRank shows surprising performance boost over AIRM and 

Log-Euclidean metric especially when both gallery set and probe 

set have very different distributions. 

 

Index Terms—DCT, Region Covariance Matrices, Log-

TiedRank, Face Recognition. 

 

1. INTRODUCTION 
 

Regional covariance matrix (RCM) is first introduced by Tuzel et 

al. [1] as a powerful means to fuse multiple correlated image cues 

or features (e.g., pixel location, intensity, image derivatives, etc.) 

for object detection and texture classification tasks. In face 

recognition, Gabor filter responses have been shown favorable in 

constructing RCM and dubbed Gabor RCM (GRCM) [2]. The 

promising performance of the original GRCM that uses filter 

response magnitude leads to proposal of different variants of 

GRCM such as fusion of Gabor phase and magnitude, Gabor log 

phase and magnitude, weighted GRCM, kernel GRCM and fusion 

of Gabor and Local Binary Pattern (LBP) [3]–[8].  

Nevertheless, while Gabor filter offers flexibility to extract 

different orientation features at multi-scale and multi-orientation, 

tuning the right parameter could be difficult. It is also 

computational expensive that it requires not only convolving both 

real and imaginary part of the filter; it is typically configured with 

a total of 40 filters (i.e., 8 orientations and 5 scales). To circumvent 

the above mentioned problems, we propose to adopt real-valued 

DCT as filter bank (i.e., half of the Gabor filter convolution 

operations). This technique however yields decorrelated filter 

responses that are not suitable for RCM construction. In section 3 

we demonstrate that applying a nonlinear operation on the filter 

responses can alter the filter responses characteristic for better 

RCM construction. 

Furthermore, despite RCM capability of implicitly encoding 

spatial information of an image region, estimating a good 

covariance requires a large number of derived features. An image 

region is usually very small in which the number of derived 

features may not be enough to estimate a reliable covariance 

especially when the probe set and gallery set have very different 

distributions (e.g., face pose and occlusions). To address this 

problem, we propose a method called Log-TiedRank. Specifically, 

we first flatten the manifold where a DCT based RCM resides and 

then the resulting vector is sorted with tied-rank criterion to obtain 

the final feature vector for recognition.  

Lastly, we provide extensive experiment results with a number 

of benchmark face datasets to evaluate the effectiveness of the 

proposed DCT as filter bank and Log-TiedRank in comparison to 

other methods.   

2. PRELIMINARY  
 

RCM proposed by Tuzel et al. [1] uses covariance as a region 

descriptor to encode multiple image cues and extracted features 

from image 𝐼 ∈ ℝ𝑛×𝑚 for recognition task. The image cues or 

extracted features such as pixel location, intensity, and filter 

responses are described with a mapping function 𝑧𝑖 = 𝜙(𝐼, 𝑥, 𝑦) ∈
ℝ𝑑 , 0 ≤ 𝑖 < 𝑛𝑚. Where 𝑥, 𝑦 are the pixel location and d is the 

feature map dimension that forms a 𝑑 × 𝑑 covariance matrix, 𝑪 for 

an image region.  

𝑪 =
1

𝑁
∑(𝑧𝑖 − 𝑢)(𝑧𝑖 − 𝑢)𝑇
𝑁

𝑖=1

,  (1) 

where 𝑢 is the mean of 𝑧 and 𝑁 is the number of samples of a 

region. A covariance matrix is a symmetric positive definite (SPD) 

matrix that lies on Riemannian Manifold where applying Euclidean 

metric directly often leads to swelling effects [9]. Instead, geodesic 

distant induced by Riemannian metric is used for measuring 

similarity between two SPD matrices 𝐶1 and 𝐶2. In this paper, we 

choose the following two metrics as baseline for evaluating our 

proposed method: 

 

(a) Affine Invariant Riemannian Metric (AIRM) [10]  

𝑑(𝐶1, 𝐶2) = √∑ ln2 𝜆𝑖(𝐶1, 𝐶2)
𝑛

𝑖=1
 (2) 

where 𝜆𝑖(𝐶1, 𝐶2) is generalized eigenvalues of 𝐶1 and 𝐶2 
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(b) Log-Euclidean Distance (Log-Euc) [9]  

𝑑(𝐶1, 𝐶2) = ‖Log(𝐶1) − Log (𝐶2)‖𝐹 (3) 

where 𝐿𝑜𝑔(. ) is matrix logarithm, and 𝐹 is Frobenius norm.  

 

3. DCT AS FILTER BANK FOR REGION 

COVARIANCE MATRIX 
An image is typically locally correlated in spatial domain in which 

one can predict the neighbor sample of a particular spatial location 

with high confidence. However, it is no longer the case when the 

image is transformed with orthogonal transform such as DCT [11]. 

The transformed or decorrelated feature provides little information 

about the correlation between its neighbors. Consequently, the 

covariance matrix of the decorrelated features would have most 

energies concentrated in the diagonal entries while the off diagonal 

entries energy would be relatively small.  

Although in this work DCT is used as a filter bank, 

convolving a 𝑘 × 𝑘 size DCT basis with an image can also be 

viewed as projecting overlapped (i.e., stride one) local images of 

patch size 𝑘 × 𝑘 onto the DCT basis. Except that projection does 

not flip the basis as convolution does, both are equivalent for 

symmetric filters. In other words, with the flipped image patch, 

projection is also equivalent to convolution. Hence, convolving an 

image with DCT filters that inherits the decorrelation characteristic 

is not suitable for RCM construction.  

In order to adopt DCT as filter bank for RCM, we apply non-

linear operation (e.g., modulus, squarer, etc) on the filter responses 

to break the decorrelation between filter responses. Fig 1 illustrates 

that applying modulus operation on the filter responses turns the 

decorrelated filter responses (i.e., energies are concentrated only in 

diagonal entries) to be globally correlated (i.e., energies spread to 

off diagonal entries). The filter responses are obtained by 

convolving a face image with a total of 49 7 × 7 DCT filters. This 

in turn increases the covariance matrix discriminant capabilities by 

encoding more correlated information among the features.  

Lastly, to decrease even more computation, we select only a 

subset with 𝑇 number of bases from DCT as filter bank. In this 

work we adopt the basis selection method proposed by DCTNet 

[12] which ranks the bases based on horizontal-frequency major 

scanning order with the intuition that distinct human face features 

compose of more high frequency horizontal components. The first 

filter obtained from the scanning order is DC component of DCT. 

However, omitting the DC component that acts as the means of an 

image patch provides robustness to the extracted feature against 

illumination variations. Therefore, the basis selection index is from 

2 to 𝑇 + 1. 

 

  
Fig 1: For illustration purposes normalized covariance matrix 

(i.e., correlation matrix) is used. Left shows the obtained 

covariance matrix without non-linear operation, right shows 

the obtained covariance matrix with absolute operation.  

4. REGIONAL LOG-TIEDRANK COVARIANCE 

MATRIX (RLTCM) 
Regional covariance matrix (RCM) [1] is capable of implicitly 

capturing spatial information by encoding local image region with  

covariance matrix. Spatial information is found to be useful for 

some recognition tasks like face recognition to encode face feature 

information separately in their respective region [2], [13]. While 

smaller region gives better spatial information precision, the 

covariance estimation gets pooper. It is also known that sample 

covariance matrix is very sensitive to outliers [14]. With a small 

number of samples an outlier can give bigger impact on the 

computed covariance matrix. Furthermore, estimating a good 

covariance matrix for representing an image region is essential for 

good recognition performance especially when the probe set 

distribution is far deviated from the gallery set (e.g., face with 

different pose). Extracting features that are very different from the 

gallery set can degrade the performance significantly.  

One possible solution to the above mentioned problems is to 

replace covariance matrix with Spearman’s rank correlation matrix 

[15] which computes Pearson correlation among ranked variables. 

It works by eliminating disparity between samples hence more 

robust against undersampling and outliers, but this solution 

involves heavy computation. Rather than adopting Spearman’s 

rank correlation matrix as the solution1, we opt to regulate the 

covariance matrix directly. However, regulating a non-singular 

covariance matrix is not trivial as it is a symmetric positive definite 

(SPD) matrix that lies on a Riemannian manifold [10]. Instead, we 

embed the nonsingular covariance matrix, 𝑆 ∈ ℝ𝑛×𝑛 into its 

tangent space with respect to origin (identiy matrix, 𝐼) to form a 

symmetric matrix, S′ ∈ ℝ𝑛×𝑛 with principal matrix logarithm2 in 

vector space [9]. 

𝑆′ = 𝐿𝑜𝑔𝐼(𝑆) (4) 

To simplify the computation, either part of the off diagonal entries 

of 𝑆′ can be omitted. Then, the remaining off diagonal entries are 

multiplied by √2 to compensate the loss energy. After 

vectorization, we obtain 𝑆′ ≅ 𝑆′⃗⃗  ⃗ ∈ ℝ𝑚 [16]: 

𝑆′⃗⃗  ⃗ = [𝑆1,1
′ , √2𝑆1,2

′ , √2𝑆1,3
′ , … , √2𝑆𝑛,𝑛−2

′ , √2𝑆𝑛,𝑛−1
′ , 𝑆𝑛,𝑛

′ ]
𝑇
 (5) 

where 𝑚 =
𝑛(𝑛+1)

2
 and 𝑆𝑖,𝑗

′  is the coefficient of 𝑆′ at (𝑖, 𝑗)  

With 𝑆′⃗⃗  ⃗ in vector space, we adopt the tied rank principle 

inspired by Spearman’s rank correlation [15] to represent 𝑆′⃗⃗  ⃗ and 

we obtain 𝑣  = 𝑇𝑅(𝑆′⃗⃗  ⃗) where 𝑇𝑅(𝑥 ) is a function that returns rank 

order of each element of 𝑥  in ascending order. Average rank is 

assigned to all elements that are tied in rank order. Finally, 𝑣  is 

used to represent the image region. Rank representation is able to 

not only eliminate disparity among features, it can also represent 

vectors that have the same rank order but different scales with an 

exact same representation, making it more robust than actual value 

representation when both probe set and gallery set are far deviated. 

                                                      
1
 We have tested replacing covariance matrix with Spearman’s 

rank correlation matrix. Even though it gives recognition 

performance gain, our proposed Log-TiedRank gives better 

performance and it has much lower computation complexity.  
2
 Note that 𝐿𝑜𝑔𝐼(𝑆) is not the scalar 𝑙𝑜𝑔 function, it is the principal 

matrix logarithm that always exist a unique real and symmetric 

logarithm when 𝑆 is SPD.   

2100



5. FEATURE EXTRACTION PIPELINE 
 

Given an input image 𝐼, and a set of filters 𝐻 that consists of 𝑇 

filters with filter size 𝑘 × 𝑘 each. Boundary of 𝐼 is zero padded 

with pad size (𝑘 − 1)/2 to keep the output filter response size the 

same as input image size. Convolving 𝐻 with 𝐼 yields 𝑇 filter 

responses. These responses are then normalized to unit variance 

and zero mean. Followed by square rooting the absolute value of 

the normalized responses forms  

𝑂𝑖 = √
|(𝐼 ∗ 𝐻𝑖) − 𝜇|

𝜎
, 𝑖 = 1,… , 𝑇 (6) 

where 𝜇 and 𝜎 are the filter responses mean and standard deviation 

respectively. To increase the discriminant capabilities as proposed 

by the original 𝑅𝐶𝑀 work [1], image pixel coordinate is added as 

an augmented feature into 𝑧 to form the final feature mapping 

function 

𝑧(𝑥, 𝑦) = [𝑥, 𝑦, 𝑂1(𝑥, 𝑦), … , 𝑂𝑇(𝑥, 𝑦)]𝑇  (7) 

Where 𝑥 and 𝑦 are image pixel coordinates. To form RCM,  𝑧 is 

partitioned into 𝐵 non-overlapping regions of size 𝑙1 × 𝑙2 each and 

covariance matrix of all the regions are obtained denoted by 

𝑪 ∈ ℝ𝑛×𝑛×𝐵, where 𝑛 = 𝑇 + 2. Then, Log-TiedRank is performed 

on each 𝑖𝑡ℎ covariance matrix 𝐶𝒊 to obtain 𝑣𝑖⃗⃗⃗  ∈ ℝ
𝑛(𝑛+1)

2 . 

Concatenating all 𝑣𝑖⃗⃗⃗   forms the final vector of the input image 𝐼 

𝒗 = [𝑣𝑖⃗⃗⃗  
𝑇
, 𝑣2⃗⃗⃗⃗ 

𝑇
, 𝑣3⃗⃗⃗⃗ 

𝑇
, … , 𝑣𝐵⃗⃗ ⃗⃗  

𝑇
]
𝑇

∈ ℝ
𝑛(𝑛+1)

2
𝐵

 (8) 

Lastly, the dimension of 𝒗 can be reduced optionally with 

whitening PCA (WPCA) where the projection matrix is learned 

from gallery set. 

 

6. EXPERIMENTS AND DISCUSSIONS 
 

In this section, we evaluate the effectiveness of the proposed DCT 

as filter bank and Log-TiedRank on 3 benchmark face datasets 

namely AR [17], FERET-I (subset ‘b’) and FERET-II (‘fa’, ‘fb’, 

‘fc’, ‘dup-I’ and ‘dup-II’)  [18] with rank-1 recognition rate. For 

comparison, we also apply Gabor filter into our feature extraction 

pipeline without non-linear operation as the magnitude of the filter 

responses is already positive value. Then, the robustness of Log-

TiedRank (Log-TR) is evaluated by comparing with Affine 

Invariant Riemmanian Metric (AIRM) [10] and Log-Euclidean 

distant (Log-Euc) [9] as baseline. Lastly, Nearest Neighbor 

classifier is used on all the experiments and cosine distant is 

applied on Log-TiedRank method.  

The same parameters are used throughout all the experiments 

except for the RCM size. For DCT we set the filter size 𝑘 × 𝑘 as 

11 × 11 with a total number of filters, 𝑇 = 30. Whereas for Gabor 

filter we use 40 filters (i.e., 𝑢 = {0,1,… ,7}, 𝑣 = {0,1, … ,4}) of size 

11 × 11 and the rest are tuned to 𝑘𝑚𝑎𝑥 = 𝜋 2⁄ , 𝑓 = √1.8, 𝜎 = 𝜋. 

 

6.1. Evaluation on AR Dataset  
 

TABLE I : AR RECOGNITION RATES (%) 

Filter Metric Expres. Illum. Occlus. Avg 

 AIRM [2] 97.643 99.663 92.845 96.717 

Gabor Log-Euc 94.781 96.465 82.828 91.358 

 Log-TR 99.327 100 99.327 99.551 

 AIRM 98.822 98.990 93.014 96.942 

DCT Log-Euc 97.980 98.148 85.606 93.911 
 Log-TR 98.485 99.832 98.317 98.878 

 
We first evaluate with AR dataset [17] which consists of over 4000 

images allows us to evaluate our method against face expression 

changes, illumination variations and occlusions. In the experiment, 

the dataset is converted to grayscale and cropped to 165 × 120. 

Out of 126 subjects, we use subset of 50 males and subset of 50 

females. Then, 2 frontal faces with neutral facial expression are 

used as gallery set and the rest are used as probe set which are 

divided into 3 groups namely expression, illumination and 

occlusion. Lastly, the region size of RCM 𝑙1 × 𝑙2 is set to 20 × 20.  

From Table I, it is observed that both filters are robust against 

expression changes due to the reason that RCM itself provides 

some deformation tolerances at local region. Besides that, Gabor 

Fig 2 : Block diagram of the feature extraction pipeline 

Input Image, 𝐼 

Filters Convolution followed by  
Nonlinear Operations 

  

RCM  
Computation 

Log-TiedRank & 
Concatenation 

Output Vector, 

 𝒗 ∈ ℝ
𝒏(𝒏+𝟏)

𝟐
𝑩 

WPCA 
(Optional) 

𝒛 ∈ ℝ𝒏 

Augmented Features &  
Filter Responses,  

𝑪 ∈ ℝ𝒏×𝒏×𝑩 
RCM,  

𝐶1 

𝐶2 

𝐶3 

𝐶𝐵 
𝑂𝑇 

𝑂1 

𝑂2 

𝑣1⃗⃗⃗⃗  

𝑣2⃗⃗⃗⃗  

𝑣3⃗⃗⃗⃗  

𝑣𝐵⃗⃗ ⃗⃗   
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filter that extracts only directional features and DCT filter choice 

that omits DC component (i.e., local image patch average 

intensity) make them robust against illumination variations. Lastly, 

while both filters have slightly poor performance against 

occlusions with AIRM and Log-Euclidean metric, Log-TiedRank 

that is robust against outliers (i.e., occluded area) shows significant 

performance gain.  

 

6.2. Evaluation on FERET-I  

TABLE II : FERET-I RECOGNITION RATES (%) 

Filter Metric Bc Bd Be Bf Bg Bh Avg 

Gabor 

AIRM [2] 50.5 94.0 99.0 99.0 88.5 48.0 79.83 

Log-Euc 45.0 86.0 97.5 98.0 83.5 43.5 75.58 

Log-TR 81.5 99.5 99.5 100 96.5 76.0 92.17 

 AIRM 61.0 94.5 99.5 99.5 94.5 70.0 86.50 

DCT Log-Euc 52.5 89.0 99.0 99.5 91.5 62.5 82.33 

 Log-TR 94.5 100 100 100 99.0 89.0 97.08 

Next, we evaluate our proposed method with FERET ‘b’ subset 

[18]. It consists of 200 subjects with a total of 1800 images. Each 

image is aligned with eyes and mouth and resized to 128 × 128. In 

the experiment, frontal faces with expression and illumination (i.e., 

Ba, Bj and Bk) are used as gallery set and non-frontal face (i.e., 

Bc, Bd, Be, Bf, Bg, Bh) are used as probe set with the pose range 

from +40 to -40 degree. For this dataset, RCM size 𝑙1 × 𝑙2 is set to 

20 × 20. 

Based on Table II while both Gabor and DCT have poor 

performance on Bc and Bh (i.e., +40 and -40 degree pose 

respectively), DCT remarkably outperforms Gabor for all metrics. 

DCT extracts features that are based on horizontal and vertical 

frequency band is less sensitive to local rotation than Gabor filter 

that extracts 𝑢 orientations (i.e., 𝑢 = {0,1, … ,7} in this 

experiment). A slight orientation change can greatly affect the 

Gabor filter extracted features.  

As oppose to AIRM and Log-Euclidean which use actual 

value representation, Log-TiedRank that uses rank representation 

is insensitive to precision difference can represent both gallery set 

and probe set that are far deviated with less deviated 

representations. With this reason, Log-TiedRank shows huge 

performance gain on Bc and Bh probe sets that are far deviated 

from the frontal face gallery set.  

 

6.3. Evaluation on FERET-II 

TABLE III : FERET-II RECOGNITION RATES (%) 

Filter Metric Fb Fc Dup-I Dup-II Avg 

Gabor 

AIRM [2] 91.72 93.30 61.77 63.25 77.51 

Log-Euc 87.11 85.05 53.60 51.28 69.26 

Log-TR 95.90 99.48 76.18 73.93 86.37 

Log-TR+WPCA 99.41 100 91.55 91.45 95.60 

DCT 

AIRM 93.72 95.36 68.56 70.94 82.15 

Log-Euc 92.47 93.30 61.63 63.25 77.66 

Log-TR 96.99 99.48 81.86 83.76 90.52 

Log-TR+WPCA 99.33 100 92.80 92.31 96.11 

 

Lastly, FERET [18] with subset Fa, Fb, Fc, Dup-I and Dup-II are 

used for evaluation. Each subset consists of 1196, 1195, 194, 722 

and 234 subjects respectively. In the experiment, each grayscale 

image is resized and cropped to 128 × 128. We use Fa as gallery 

set and the rest are used as probe set. Then we set RCM region size 

𝑙1 × 𝑙2  to 16 × 16.  

The experiment results from Table III show that DCT 

outperforms Gabor for all methods. It also shows that Log-

TiedRank consistently shows significant performance gain 

especially on Dup-I and Dup-II that consist of aged faces. To have 

even better recognition performance, we also apply Whitening 

PCA (WPCA) after Log-TiedRank stage as shown in Fig 2. The 

WPCA projection matrix is learnt from Fa gallery set and it is 

reduced to 1000 dimension.  

6.4. Comparison with other RCM based methods 

TABLE IV : COMPARISON WITH OTHER RCM BASED METHODS 

Method Fb Fc Dup-I Dup-II Avg 

RCM [1] 85.19 27.84 44.04 29.06 46.53 

Sigma Sets [19]  89.62 91.75 50.55 44.87 69.20 

GRCM [2] 91.72 93.30 61.77 63.25 77.51 

GWRCM [6] 91.63 93.30 62.19 64.10 77.81 

DCT (AIRM) 93.72 95.36 68.56 70.94 82.15 

DCT (Log-TR + WPCA) 99.33 100 92.80 92.31 96.11 

For comparison, we also evaluate other RCM based methods with 

our pipeline (without non-linear operations and Log-TiedRank) 

except for Sigma Sets, input image and filter responses are 

normalized to zero mean and unit variance. We follow the AIRM 

[10] metric used by RCM [1], GRCM [2] and GWRCM [6] and 

Modified Hausdroff Distance [20] used by Sigma Sets [19]. For 

RCM, mapping function is set to  

𝑧(𝑥, 𝑦) = [𝑥, 𝑦, 𝐼(𝑥, 𝑦),
𝜕𝐼(𝑥,𝑦)

𝜕𝑥
,
𝜕𝐼(𝑥,𝑦)

𝜕𝑦
,
𝜕2𝐼(𝑥,𝑦)

𝜕𝑥2 ,
𝜕2𝐼(𝑥,𝑦)

𝜕𝑦2 ]
𝑇

, and for 

the rest, the same 𝑧(𝑥, 𝑦) from the previous experiments are used. 

Lastly, the 𝜎 parameter of the GWRCM similarity function (i.e., 

Gaussian function) is set to 𝜎 = 70. 

From Table IV despite simplicity both our proposed DCT as 

filter bank on RCM that uses AIRM metric as baseline and Log-

TiedRank with WPCA show superior performance among all the 

compared RCM based methods.  

 

7. CONCLUSION 
 

To conclude, with a simple nonlinear operation we are able to 

make the decorrelated filter responses obtained from DCT to be 

globally correlated making it suitable for RCM construction. From 

the experiments, we also demonstrate that despite low complexity 

the real-valued DCT with 30 filters which requires less than half of 

the convolution operations outperforms complex-valued Gabor 

with 40 filters in most cases. It is also shown that, DCT is more 

robust against occlusions and pose changes. In the case where the 

constructed RCM from probe set is far deviated from gallery set, it 

can drastically affect the recognition performance. With Log-

TiedRank that represents the flatten RCM manifold vector with 

rank order makes the extracted features from probe set and gallery 

set less deviated from each other proves useful.  
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