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ABSTRACT 

The standard multi-scale, multi-orientation Gabor filter ensemble 

(SGFE) in the face recognition task reposits 40 filters localized in 8 

orientations and 5 scales, with a real and an imaginary constituent. 

This paper devises a simple means of filter diversification, dubbed 

as multi-fold Gabor filter convolution ( -FGFC), where a set of 

pre-selected filters, e.g., single-scale Gabor filters across varying 

orientations, are self-cross convolved by   folds to instantiate the 

offspring filters. To facilitate filter selection for  -FGFC, this 

paper summarizes SGFE into the condensed Gabor filter ensemble 

(CGFE) of only 8 filters. In addition, an average histogram pooling 

operator is proposed to downsample and regulate the demodulated 

Gabor phase features prior to the final compression stage. The 

performance of a specific  -FGFC instance, i.e., the 2-FGFC 

descriptor, is investigated on FERET I (frontal), FERET II (non-

frontal) and AR datasets. The experimental results on FERET I 

substantiates that the 2-FGFC descriptor outperforms the leading 

state of the art face descriptors.  

  

Index Terms— Gabor filters, self-cross filter convolution, 

face recognition, biometrics 

 
1. INTRODUCTION 

Face recognition is a challenging task due to the intra-class 

variability arisen from misalignment, non-rigid deformations, 

illuminations, occlusions, etc. An ideal face descriptor should be 

invariant to these intra-class variations whilst magnifying the inter-

class margin. This paper focuses on the filter bank-based 

approaches that share the common 3-stage pipeline: (1) 

convolution of input images and filters, where the filters are either 

defined by mathematical functions [1-4], or pre-learned from the 

training specimens [5-7]; (2) a non-linear operation and encoding; 

(3) local histogramming; in which coined spectral histogram 

technique collectively [8-9].  

The standard Gabor filter ensemble (SGFE) adopted in the face 

recognition literature encompasses 40 filters localized in 8 

orientations and 5 scales [1], [10-15]. One of the earliest known 

works involving Gabor face representation is introduced by Liu 

and Wechsler [1]. Instead of histogramming the extracted features, 

Liu and Wechsler apply the enhanced Fisher linear discriminant 

(FLD) to the concatenation of Gabor responses. In contrast, Zhang 

et al. [10] and Zhang et al. [11] make use of the spectral histogram 

technique, where the former utilizes the local binary pattern (LBP) 

operator to encode Gabor magnitude while the latter exploits the 

local XOR pattern (LXP) operator on Gabor phase. Other similar 

methods are: Xie et al. [12] fuses the local patterns derived from 

Gabor magnitude and phase, followed by block-based FLD; Lei et 

al. [13] conglomerates the local variations in the spatial, scale and 

orientation domains. This paradigm (applying LBP or LXP in the 

Gabor domain), on average, have shown significant improvement 

over their individual representation. Hussain [14], on the contrary, 

histograms the binary and ternary vectors extracted from the local 

neighborhoods of the Gabor responses with respect to a codebook 

learned using the K-mean algorithm.  

 The latest spectral histogram technique - PCANet [5] employs 

the cascaded principal component analysis (PCA) to pre-learn the 

multistage filter banks. The empirical performance discloses that a 

simplistic 2-stage net topology performs unexpectedly well on the 

generic image recognition, including face. Different from PCANet, 

the binarized statistical image features method (BSIF) [6] exercises 

the independent component analysis (ICA) to pre-learn a filter set 

from 13 natural images. BSIF, however, demands an illumination 

normalization step proposed by Tan and Triggs [15] to normalize 

the texture and face images. Other well-known filters in texture 

classification include Leung Malik [2], Schmid [3], MR8 [4], etc. 

 Inspired by the PCANet performance and the Gabor filters 

that model the receptive field profiles of mammalian cortical 

simple cells [16-17], this paper outlines a new means of simple 

filter diversification by self-cross convolving the Gabor filters via 

multiple folds. The major contribution is threefold: (1)  -fold 

Gabor filter convolution ( -FGFC) is devised to yield offspring 

filters of numerous traits from a set of pre-selected Gabor filters. 

(2) this paper represents the 40 SGFE filters as a condensed Gabor 

filter ensemble (CGFE) of only 8 elementary filters; (3) the Gabor 

phase feature is leveraged by an average pooling unit to alleviate 

the dimensionality problem. The generic   -FGFC pipeline is 

portrayed in Fig. 1.  

 

2. GABOR WAVELET 

Gabor wavelets, acclaimed to be optimally localized in the spatial 

and frequency domains, permit the local structures of input images 

to be extracted with respect to the tuned spatial frequencies (scale) 

and orientations [1]. The 2D Gabor wavelets of   orientations and 

  scales, in practice of face recognition, are defined as follows: 

    ( )   
‖      ‖
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‖   ‖       )[                 ]  (1) 

where   *       + ,   *       + ,   (   ) ,   refers to the 

Gabor envelop width set to    in the experiments. The wavelet 

vector, on the other hand, is denoted as         
   , where    

      
 ,        ,   √ , and          . 
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 The Gabor response of an arbitrary image  ( ) is described as 

the convolution of  ( ) with each Gabor filter in the spatial domain 

as follows: 

    ( )   ( )        ( ) (2) 

where * denotes the convolution operator. For each Gabor filter, a 

real and an imaginary map are responded:      
  ( ) and     

  ( ).  

 

3. MULTI-FOLD GABOR FILTER CONVOLUTION 

3.1. Condensed Gabor Filter Ensemble Formulation 

Gabor filter-bank methods, e.g., [1], [10-15], suffer from the severe 

dimensionality issue due to the concatenation of filter responses. 

Hence, this paper condenses the 40 multi-scale, multi-orientation 

Gabor filters in SGFE (refer to   in (1)) by averaging the filters of 

certain orientation across varying spatial frequencies (scales) to 

define CFGE,  , of only      filters as follows: 

  {     
 

    
  ∑      

      
          }
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where       ,        and            in this paper. Fig. 

2(a) depicts that the 8 elementary CGFE filters are in the initial 8 

orientations. 

 

3.2.  -FGFC Filtering 

For  -FGFC, let {    

( )
        }

    

  

be   sets of CGFE filters 

defined in (3), where         and         ; these CGFE 

filters are self-cross convolved by m-fold to yield    ∏   
 
    

offspring filters   as follows: 

  {                

( )
    

( )
      

( )
 }
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where      *      +    *      +      *      +  and 

   (   )   . For 2-FGFC with    2 and        8, 

the input filters of size 3 3 (in each fold) return   = 64 (=8 8) 

offspring filters of size 5 5; on the other hand, for 3-FGFC with 

   3 and           8, the input filters of the same size 

produces   = 512 (8 8 8) offspring filters of size 7 7. Let an 

arbitrary image          be a set of zero-mean local patches 

*            +   
  and      ;   is convolved with each 

offspring     to yield   responses as follows: 

   *           +   
   (5) 

 Fig. 2(b) depicts the Gabor offspring set of 64 (=8 8) filters 

resulted from 2-FGFC with respect to the 8 CGFE filters (in each 

fold) provided in Fig. 2(a). It is observed that these offspring filters 

are implanted with distinctive characteristics in the spatial domain. 

The filters of checkerboard-like structure, for example, are formed 

as a consequence of the filter convolution in two directions. Hence, 

aside from being sensitive to the local edges (just as 1-fold Gabor 

filters), the offspring filters are also capable of featuring the latent 

textures consistent with the corresponding spatial frequencies. In 

other words, the offspring filters serve dual role: edge and texture 

detectors. This remark is to be validated through extensive studies 

and experiments. Since the offspring filters are redundant (the self-

cross filter convolution operation is commutative), the offspring set 

can be pruned to 36 (=(8+1)8/2) unique filters. 

 

 
(a) 

 

 

 

 

 

 

 
(b) 

Fig. 2. The 8 elementary CGFE filters (a) are diversified via 2-

FGFC to generate 64 offspring (b), with only 36 unique filters. 

 In summary, for  -FGFC,   responses are obtained for each 

real and imaginary constituent. In practice,   is to be determined 

empirically for certain degree of performance gain resulting from 

filter diversification. The major downside of  -FGFC is that   

increases exponentially with respect to  . This paper, however, 

only restricts the discussion to 1-FGFC and 2-FGFC. 

 

3.3. Binarization and Histogramming 

Subsequent to (5), the resultant real and imaginary filter responses 

are binarized via a thresholding phase with respect to 0, i.e., a non-
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linear operation, followed by feature encoding to bin the extracted 

local structures into histograms. This is primarily due to the reason 

that histogram representation offers translation invariance, to some 

extent. The full properties of the spectral histogram technique are 

detailed in [8]. 

  -FGFC yields   responses to be binned into   ∏   
   
    

histograms. To be specific,    in (5) is first quantized into    -bit 

integers, ranging from ,        - to define  ( ) as follows: 

 ( )   ∑  (  (    )      
 )

  

    

         (6) 

where         and  (   ) refers to the Heaviside step function. 

Each  ( ) is subsequently separated into   non-overlapping blocks 

of    , where        . For each   block, the occurrences for 

the      bins are aggregated as follows: 

  
( )

 ∑ (     
( )

(   ) )

   

              (7) 

where (   ) is the Kronecker delta function. The   local histograms 

for  ( ) are concatenated to form   ( )   (   )   and the global 

histogram defining the  -FGFC descriptor is derived as follows: 

  [  (   )    (   )]   (   )     (8) 

 In our complex Gabor case, the global histogram features for 

the real and imaginary parts, denoted by     and     in Fig. 1, 

are cascaded and vectorized to represent the corresponding Gabor 

phase feature        
    (   )       based on the Daugman’s 

phase-quadrant demodulation code described in [18]. As the      
   

formulation doubles the feature dimensionality, an average pooling 

operator is devised to alleviate this issue. 

 

3.4. Average Spatial Histogram Pooling  

POOLAVG is an average pooling operator proposed to downsample 

and regulate the underlying probability density function defined by 

the global histogram feature  . This signifies that, in addition to 

dimension reduction, the POOLAVG operator also uniformizes the 

histogram distribution such that the burstiness and the zero-valued 

bins, to some extent, are rectified.  

Let   be a D-dimensional histogram feature to be pruned onto 

   of    dimensions; the POOLAVG operator manipulates every 

single element of   as follows:   

  
   

 

 
 ∑  (    )        

 
               (9) 

where   (   )     ,    
   

 
  , and P and S are pooling 

window size and the stride step, respectively. In the experiments, 

the (   )       -dimensional      
  is in turn square-rooted 

and averagely pooled by POOLAVG to elicit     
   of (   )    

  dimensions. After that,      
  is L2-normalized and whitening 

PCA (WPCA) is followed to yield a globally compact  -FGFC 

descriptor. 

 

4. EXPERIMENTS 

4.1. Benchmarking Datasets: FERET I, FERET II, AR 

The performance of the  -FGFC descriptor is benchmarked based 

on the FERET evaluation protocol on both FERET I (frontal) and 

FERET II (non-frontal) [19], and our own protocol on AR [20]. 

 FERET I furnishes a reference gallery set: FA, with only a 

single frontal image per subject (1196 images in total); and 

4 probe sets: FB, FC, DUP I and DUP II, with expression, 

illumination and time span variations (with 1195, 194, 722 

and 234 images, respectively). These images are re-aligned 

and cropped into size 128 128 based on the annotated eye 

coordinates. 

 FERET II consists of non-frontal probe faces captured from 

viewpoint angles of ±400, ±250, ±150, which are labeled as 

BC, BD, BE, BF, BG and BH. In addition, it also includes 

frontal images in the BA, BJ and BK repositories employed 

as references. Note that, each repository accommodates 200 

images provided by the same 200 subjects. All images are 

geometrically pre-processed into 128 128 according to the 

eyes and mouth coordinates.  

 AR, on the other hand, contains frontal faces acquired from 

100 subjects in 2 occasions. Each subject supplies 26 faces 

of various facial expressions: neutral, smile, anger, scream; 

illumination conditions: left or/and right lighting on; and 

occlusions: either sun-glasses, or scarf. In our experiments, 

each image is cropped into 165 120. For each subject, only 

2 images of neutral expression are on the gallery list; and 

the remaining 24 images act as probes.  

 

4.2. Implementation Summary 

In a nutshell, for 2-FGFC that accommodates 8 filters in each fold, 

a probe is convolved with each of the offspring filters to produce 

36 distinctive responses to be in turn zero-thresholded and encoded 

into the 8-bit integer outputs. Subsequent to that, these outputs, for 

all FERET I, FERET II and AR images, are regionalized into 8   8 

non-overlapping blocks and the discriminative features are locally 

quantized into 8 histograms. These histograms are concatenated to 

form a global feature of 131, 072 dimensions (for each real and 

imaginary part): 64 blocks   28 histogram bins   8 histograms. 

The demodulated Gabor phase feature, thus, encapsulates 262, 144 

dimensions, to be averagely halved via POOLAVG with      . 

The 2-FGFC performance is evaluated on the WPCA compressed 

feature based on the Cosine similarity scores. 

 

4.3. Performance Analysis on CGFE 

FERET I is utilized as a testbed to compare the CGFE performance 

to SGFE, where 1-FGFC-8 and 1-FGFC-40 denote the descriptors 

resulted from the 8 CGFE and 40 SGFE filters, respectively. The 

1-FGFC-40 descriptor, in general, resembles GGPP in [11]. What 

distinguish 1-FGFC-40 from GGPP is the former applies WPCA to 

compress the demodulated Gabor phase representation onto 1000 

dimensions. The rank-1 recognition rates (%) summarized in Table 

1 disclose that, despite of only 8 filters, the performance of the 1-

FGFC-8 descriptor is on par with 1-FGFC-40 for the filter sizes of 

7   7, 9   9 and 11   11. 

  

Table 1. Performance comparison for 1-FGFC-8 of 8 filters and 1-

FGFC-40 of 40 filters, in terms of rank-1 recognition rates (%). 

DESCR. FB FC DUP I DUP II  MEAN 

1-FGFC-40 7 x 7 99.16 98.97 91.69 88.03 94.46 

1-FGFC-40 9 x 9 99.00 98.97 92.52 89.32 94.95 

1-FGFC-40 11 x 11 98.91 99.48 91.14 86.75 94.07 

1-FGFC-8 7 x 7 99.16 99.48 91.83 86.75 94.31 

1-FGFC-8 9 x 9 99.25 98.97 91.41 87.61 94.31 

1-FGFC-8 11 x 11 99.16 99.48 90.58 86.75 94.00 
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4.4. Performance Evaluation on FERET I  

Table 2 compares the performance of the 2-FGFC descriptor, in 

terms of rank-1 recognition rate (%), to the notable state of the arts 

on FERET I. Overall, the 2-FGFC descriptor of 1000 dimensions 

prevails over the traditional 1-fold Gabor descriptors, specifically, 

HGPP [11], LGBP+LGXP [12], E-GV-LBP [13] and G-LQP [14]. 

The merit of the 2-FGFC descriptor is that it pursues a simple 3-

stage architecture with only 36 distinctive filters for each real and 

imaginary constituent. G-LQP, on the other hand, necessitates an 

external code book to encode the thresholded filter responses.  

 PCANetMP [5], PCANetFERET [5] and BSIF [6] are re-implemented 

using the MultiPIE-learned filters (shared by PCANet’s authors), 

the FERET-learned filters, and the ICA filters pre-learned from 13 

natural images (shared by BSIF’s authors), respectively. Due to the 

reason that these filters are cultivated via an explicit learning phase 

in accordance with the training images available, the learning-free 

2-FGFC descriptor, therefore, appears to be parsimonious. Another 

discovery is the BSIF performance drops drastically, from 92.02% 

to 69.62%, if the Tan & Trigg’s illumination normalization [15] is 

withdrawn from its pipeline. Moreover, it is also demonstrated that 

the 2-FGFC descriptor outperforms the recently proposed learning-

based LBP descriptors: DFD [21] and CBFD [22], especially in the 

most challenging DUP I and DUP II subsets. 

 
Table 2. Performance summary for 2-FGFC and state of the arts, 

in terms of rank-1 recognition rate (%), on FERET I, where * 

denotes the results reported in the original papers. 

DESCR. FB FC DUP I DUP II  MEAN 

* HGPP [11] 

(TIP, 2007) 
97.50 99.50 79.50 77.80 88.58 

* LGBP+LGXP [12] 

(TIP, 2010) 
99.00 99.00 94.00 93.00 96.25 

* E-GV-LBP [13] 

(TIP, 2011) 
98.41 98.97 81.99 81.62 90.25 

* G-LQP [14] 

(BCMV, 2012) 
99.99 100 93.20 91.00 96.05 

BSIF [6] +  

Tan & Trigg [15] 

(ICPR 2012) 

95.98 99.48 86.29 86.32 92.02 

BSIF [6]  

(ICPR 2012) 
94.73 59.79 68.84 55.13 69.62 

PCANetMP,5x5 [5]  

(TIP, 2015) 
99.25 100 94.46 93.16 96.72 

PCANetFERET,5x5 [5] 

(TIP, 2015) 
99.16 100 94.04 92.31 96.38 

* DFD [21] 

(TPAMI, 2014) 
99.40 100 91.80 92.30 95.88 

* CBFD [22] 

(TPAMI, 2015) 
99.80 100 93.50 93.20 96.63 

2-FGFC13 x 13 99.41 100 95.98 94.02 97.35 

2-FGFC17 x 17 99.41 99.48 95.57 93.59 97.01 

2-FGFC21 x 21 99.16 99.48 95.15 93.59 96.85 

 

4.5. Performance Evaluation on FERET II 

The performance of the 2-FGFC descriptor against pose variations 

is examined on FERET II with respect to varying Gabor offspring 

filters of 13   13 to 21   21, where the global histogram features 

are WPCA-ed onto 300 dimensions. Table 3 displays that the 2-

FGFC descriptor is relatively sensitive against awful pose angles of 

±400. Some FERET II exemplars are shown in Fig. 3 for reference. 

 BC BD  BE  BF  BG  BH 

  
Fig. 3. Some exemplars extracted from FERET II. 

 

Table 3. Performance summary for 2-FGFC, in terms of rank-1 

recognition rate (%), on FERET II. 

DESCR. 
BC 

+ 400 
BD 

+ 250 
BE 

+ 150 
BF 

- 150 
BG 

- 200 
BH 

- 400 
MEAN 

2-FGFC13 x 13 79.50 99.50 100 100 96.00 65.00 90.00 

2-FGFC17 x 17 88.00 100 100 100 98.50 75.00 93.58 

2-FGFC21 x 21 84.00 100 100 100 98.50 82.00 94.08 

  

4.6. Performance Evaluation on AR 

Table 4 lists the rank-1 recognition rate (%) for the PCA whitened 

2-FGFC descriptor of 180 dimensions, with respect to the Gabor 

offspring filters of 13   13, 17   17 and 21   21. The 2-FGFC 

descriptor, on the whole, shows remarkable robustness, particularly 

to illumination, and also the sun-glasses and scarf disguises. It is 

noteworthy that our protocol (refer to Section 4.1) only includes 2 

frontal faces with neutral expression per subject as references. 

 

Table 4. Performance summary for 2-FGFC, in terms of rank-1 

recognition rate (%), on AR. 

DESCR. EXPR. ILLM. OCCL. MEAN 

2-FGFC13 x 13 98.82 100 99.24 99.35 

2-FGFC17 x 17 98.65 100 99.92 99.52 

2-FGFC21 x 21 98.82 100 100 99.61 

 

5. CONCLUSIONS 

To yield offspring filters of diversified traits, this paper proposes to 

self-cross convolve the pre-selected Gabor filters by  -fold ( -

FGFC). This paper also outlines a viable instance to summarize the 

standard 40 multi-scale, multi-orientation Gabor filters, termed as 

SGFE, into the condensed Gabor filter ensemble (CGFE) of only 8 

filters. The demodulated Gabor phase features are leveraged by an 

average pooling operator followed by whitening PCA to obtain the 

final representation. The proposed CGFE is empirically uncovered 

to be parallel to SCFE. In addition to that, the 2-FGFC descriptor is 

revealed to exhibit the state of the art recognition performance on 

the FERET I (frontal), FERET II (non-frontal) and AR datasets, in 

terms of rank-1 recognition rate (%). It is also evidenced that the 2-

FGFC performance surpasses other representative face descriptors, 

including the most-reputed learning-based LBP variants: DFD and 

CBFD. For future work, the  -FGFC descriptor, for   2, will 

be scrutinized on other face datasets, e.g., FRGC, LFW, CMU-PIE, 

etc, against various circumstances. 
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