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ABSTRACT

In real world surveillance application, the captured faces are
often low resolution (LR) and corrupted by mixed Gaussian-
impulse noise during the acquisition and transmission pro-
cesses. In this paper, we propose an effective patch-based
face super-resolution method to reconstruct a high resolution
(HR) face image given an LR observation that is corrupted
by mixed Gaussian-impulse noise. To represent the corrupt-
ed image patches, a sparse regularization combined with an
`1 data fitting term is proposed. In the proposed model, both
the patch reconstruction term and the regularization term are
in the `1 norm form. As a result, the model is called `1-`1
norms. In addition, since image pixels have nonnegative in-
tensities, we further add a nonnegative constraint to the patch
representation model. Experimental results demonstrate that
the proposed `1-`1 norms based method can achieve superior
face super-resolution performance over several state-of-the-
art approaches based on the objective results in terms of P-
SNR, as well as the visual perceptual quality.

Index Terms— Video surveillance, super-resolution, `1-
`1 norms, mixed Gaussian-impulse noise, sparse representa-
tion

1. INTRODUCTION

In criminal investigation, face image, as one of the most in-
formative objects for investigators, is the most direct and im-
portant cue for solving a case. However, in real world surveil-
lance application, the captured faces are low resolution (LR)
and low quality due to the person of interest is at a distance,
bandwidth and storage resources limitation, etc. With many
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Fig. 1. The image degradation process to be reversed by face
super-resolution. B is a blurring filter, D is the decimation
operator, and n is the additive noise. Face super-resolution is
to solve the ill-posed inverse problem of inferring the target
HR face image from the input LR observation.

details of facial features lost in image acquisition and trans-
mission, it is very difficult to recognize the person of interest
for computers or human. Super-resolution is a technology that
can reconstruct a high resolution (HR) image from an LR ob-
servation, with the help of an exemplar training set to learn a
suitable model [1, 2]. Fig. 1 shows the concept of face super-
resolution. Because of the ability of effectively enhancing the
resolution of the LR observation and restoring the detailed
facial features, face super-resolution is a crucial step for the
following face recognition task by human or computers [3, 4].

In [5], Baker and Kanada proposed “face hallucination”
to model the relationship between LR image patches and HR
ones using a Bayesian formulation. Capel and Zisserman [6]
presented an algorithm where principal components analy-
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sis (PCA) subspace models were used to learn six different
regions of the entire faces. Liu et al. [7] developed a two-
step approach toward super-resolution of faces by integrating
a PCA based global parametric model and a Markov random
field (MRF) based local nonparametric model. From then on,
face super-resolution has attracted growing attention from the
image processing community and many algorithms have been
developed [8, 9]. In this paper, we mainly focus on the local
patch based methods for their strong representation ability.

The most representative work for local patch based super-
resolution was proposed by Chang et al. [10]. With the
assumption that HR image patches and LR image patches
share the same geometry structure, they utilized Locally Lin-
ear Embedding (LLE) [11] to learn the optimal reconstruction
weights of multiple LR base elements to estimate the optimal
HR patch representation. Zhang and Cham further extended
the LLE algorithm to the discrete cosine transform (DCT)
space [12]. Li et al. learned the relationship between the LR
and HR patches in the common manifold spaces [13]. In [14],
Jiang et al. proposed to model the LR and HR patch spaces
iteratively. Ma et al. [15] proposed a least squares represen-
tation (LSR) based local patch face super-resolution method
by incorporating the position-patch information. To address
the problem of unstable solution of LSR, Yang et al. [16]
developed a sparse representation (SR) based local patch face
super-resolution method by adding a sparsity constraint to the
lease squares problem. Most recently, Jiang et al. [17, 18]
further improved the position-patch based representation
method by incorporating the locality constraint instead of
the sparsity constraint, and presented a locality-constrained
representation (LcR) method. Some recent works [19, 20, 21]
that focus on the locality prior and manifold assumption have
proposed to improve the performance of [17, 18]. Most re-
cently, many face super-resolution methods that focus on the
wild conditions have been proposed [22, 23].

The aforementioned approaches are proposed under the
noiseless or the additive white Gaussian noise (AWGN) con-
ditions. However, in practice, especially in video surveillance
systems, impulse noise is also a common type of image degra-
dation (as shown in Fig. 1) due to malfunctioning pixel ele-
ments in the camera sensors, errors in analog-to-digital con-
version, faulty memory locations, and transmission errors [24,
25]. In recent years, many mixed Gaussian-impulse noise
removal technologies have been proposed [26, 27]. These
methods usually first perform impulse noise pixel detection
and then remove the added mixed-noise. The most direct way
of face super-resolution with mixed Gaussian-impulse noise
is to perform noise removal (or denoising) and face super-
resolution reconstruction separately. However, the denoising
error may be amplified in the following face super-resolution
reconstruction task.

One natural question is that can we develop a mixed
Gaussian-impulse noise robust face super-resolution method
which does not perform noise removal and face super-

resolution reconstruction separately but conducts the two
tasks in the unified framework? Inspired by the recent work-
s [28, 29], which have verified that the `1 norm based data-
fidelity term can be effectively applied to the mixed-noise
removal problem, in this paper we propose an `1-`1 norms
based patch representation model to super-resolve the LR ob-
servation that is corrupted by mixed Gaussian-impulse noise.
In our method, the data-fidelity term as well as the regulariza-
tion term are both modeled using `1 norm. It does not have
an explicit noise removal step and can perform denoising and
face super-resolution reconstruction simultaneously. Further-
more, we also incorporate the nonnegative constraint to the
proposed `1-`1 norms based patch representation model to
make the super-resolved results more reasonable.

The rest of this paper is organized as follows. In Sec-
tion II, we present the implementation details of the proposed
method. Section III reports some numerical and visual results
with mixed noise inputs on one public face dataset. Finally,
the conclusion appears in Section IV.

2. THE PROPOSED `1-`1 NORMS BASED PATCH
REPRESENTATION METHOD

Following the merits of [10, 15, 16, 30, 18], given an L-
R observation patch image xt, the goal of these local patch
based face super-resolution is to reconstruct the HR version
of the input LR patch image yt by learning the relationship
between the LR and HR training image patch pairs, X =
[x1, x2, ..., xN ] and Y = [y1, y2, ..., yN ]. The key issue is
how to obtain the optimal representation of xt with X via the
following minimization problem:

ŵ = arg min
w

f(w;xt, X) + λΩ(w), (1)

where f(w;xt, X) is the data-fidelity term, Ω(w) is an im-
age prior (also called the regularization term), and λ is the
regularization parameter that balances the contribution of the
patch reinstruction error and the regularization term. In fact,
the above regularization based minimization problem can be
strictly derived from the maximum a posteriori (MAP) crite-
rion with prior knowledge in image degradation models.

The prior works mainly focused on designing a good reg-
ularization term to obtain the optimal patch representation
w. For example, collaboration [15], sparsity [16, 30, 31,
32], locality [10] and data-driven locality [17, 33, 18, 19,
20] were introduced to regularize the reconstruction of w.
They used the l2 norm-based linear least squares term, i.e.,
f(w;xt, X) = ||xt − Xw||22, for the data-fidelity. The l2
norm-based linear least squares problem is easy to solve and
the solution is robust to AWGN. In the case of AWGN, the
encoding model can be generally written as:

ŵ = arg min
w

||xt −Xw||22 + λΩ(w). (2)
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With some regularization, e.g., sparsity or locality, the recon-
structed weights w are the Bayesian inference for the AWGN
noise model. However, for images corrupted by impulse
noise, the distribution of noise is generally far from Gaussian
and thus the `2 norm data fidelity term ||xt−Xw||22 in Eq. (2)
will not lead to an MAP solution for noise removal. This spar-
sity regularization not only ensures that the under-determined
linear least squares problem has an exact solution, but also
makes the solution more robust than using the `2 norm in
statistical estimation.

In real video surveillance systems, the LR observation-
s are often degraded by mixed noise (e.g., Gaussian noise
mixed with impulse noise). Therefore, the additive noise does
not satisfy the Gaussian assumption in this case. Recently,
minimizers of cost functions involving `1 data fidelity have
been studied [28, 29], and have shown good performance in
image restoration problems. To restore images corrupted by
mixed Gaussian-impulse noise, in this paper we also intro-
duce the `1 data fidelity and propose an effective patch repre-
sentation model by solving the following minimization prob-
lem, which we call the `1-`1 problem:

ŵ = arg min
w

||xt −Xw||1 + λ||w||1, (3)

where ||.||1 denotes the `1 norm. In Eq. (3), we use the `1
norm for both the data fitting and the regularization terms.

Usually, image pixels satisfy x ≥ 0. By incorporating the
nonnegative constraint, it can make the solution more reason-
able. Thus, the objective function of our proposed method
can be written as follows:

ŵ = arg min
w

||xt −Xw||1 + λ||w||1
s.t. w ≥ 0.

(4)

The problem (4) can be solved by CVX toolbox [34].
Upon acquiring the optimal representation ŵ of the input

LR patch image with the LR training set, the corresponding
HR version can be reconstructed by the same optimal repre-
sentation with the HR training set.

3. EXPERIMENTAL RESULTS

In this section, we describe the details of experiments per-
formed to evaluate the effectiveness of the proposed `1-`1
based patch representation method for face super-resolution.
We compare our method with several recent state-of-the-
art methods including Wang et al.’s eigentransformation
method [35], Ma et al.’s Least Squares Representation (LSR)
method [15], Yang et al.’s Sparse Representation (SR) [36]
method, and our previously proposed Locality-constrained
Representation (LcR) method [18]. The experiments are
carried out on the public FEI face database1 [37]. The face

1http://fei.edu.br/∼cet/facedatabase.html

super-resolution performance is quantified by the peak signal-
to-noise ratio (PSNR) between the ground truth face images
and the super-resolved ones.

Database and Parameter Settings. The FEI face database
consists of 200 subjects and each subject has two facial im-
ages. Human faces in the database are mainly from 19 to 40
years old with distinct appearances, e.g., hairstyles and adorn-
ments. All the images are cropped to 120×100 pixels to for-
m the HR training faces. Note that the face can be aligned
by some recently proposed automatic alignment methods [38,
39] and feature points matching methods [40, 41]. The LR
images are formed by smoothing (by a 4×4 mean filter) and
down-sampling (by a factor of 4 resulting the size of LR face
images to be 30×25 pixels) the corresponding HR images,
and then the additive white Gaussian noise (with the standard
deviation σ = 10) and impulse noise (by the random value
with 10% and the salt-and-pepper impulse noise with 5%) is
added. In our experiments, we use 360 images to train the
proposed algorithm, leaving the rest 40 images for testing.
As reported in [18], we set the size as 12×12 pixels for HR
patch and the overlap between neighbor patches as 4 pixels.
The corresponding LR patch size is set to 3×3 pixels with an
overlap of one pixel.

Comparison Results. From Fig. 2, it can be seen that
for face super-resolution with mixed Gaussian-impulse noise,
the proposed `1-`1 norms based patch representation method
could consistently achieve much higher PSNR indices than
the LSR [15] and SR [16] methods, and better PSNR perfor-
mance than the LcR method [18]. Note that the average gain
in terms of PSNR of our proposed method over the second
best method (i.e., the LcR method [18]) is 1.52 dB.

We also present two groups of visual comparisons of the
face super-resolution results using different methods. Fig. 3
shows the super-resolution results on two LR faces. Clearly,
the proposed `1-`1 norms based patch representation method
can better reconstruct edges than all the other competing
methods. In particular, Bicubic, LSR [15] and SR [16] meth-
ods fail to recover the image structures. LSR [15] and SR [16]
cannot well deal with the impulse noise due to the `2 norm
based data fidelity is designed for the Gaussian noise and
is not suitable for the mixed noise. Wang et al.’s method
removes most of the added noise, but also smooths the fa-
cial details leading to the super-resolved faces similar to the
mean face. Compared to the LcR method [18], our proposed
method is able to faithfully reconstruct the edges and detailed
texture features (see the regions highlighted by red boxes).
The results of the LcR method [18] are smooth and dissimilar
to the “ground truth” HR face images.

4. CONCLUSIONS

In this paper, we proposed a novel approach for face super-
resolution with mixed Gaussian-impulse noise. By explor-
ing the patch representation prior, we presented an effective
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Fig. 2. Face super-resolution results (PSNRs) of different methods. The average PSNR values of the 40 test images for these
six comparison methods are 16.54 dB (Bicubic), 22.35 dB (Wang et al. [35]), 12.51 dB (LSR [15]), 13.46 dB (SR [16]), 23.07
dB (LcR [18]), and 24.59 dB (our proposed method), respectively.

Fig. 3. Face super-resolution results of different methods (from left to right are the input LR images, results of Bicubic
interpolation, Wang et al.’s method [35], LSR method [15], SR method [16], LcR method [18], our proposed method, and the
“ground truth” HR face images.

patch representation with an `1 based data fidelity and an `1
based regularization term. The proposed `1 − `1 norms is
much more suitable for molding the mixed Gaussian-impulse
noise. Experimental results on the public FEI dataset verified
the robustness of our proposed face super-resolution method
to mixed Gaussian-impulse noise. Moreover, the proposed
method achieved superior face super-resolution performance
over the state-of-the-art algorithms which ignored the influ-
ence of data fidelity for the super-resolution reconstruction.
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