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ABSTRACT

In this paper we address the notion of risk assessment of three
dimensional scenes. Furthermore through the use of local fea-
ture recognition techniques and machine learning we perform
this analysis on real time point cloud recordings. We pro-
vide a definition of risk and potential hazards that incorpo-
rates different elements but mainly focuses on intrinsic risk
related properties of an object (e.g sharpness). A 3D Voxel
HOG descriptor is utilised that aims to classify and recognise
the presence of hazardous characteristics and features of ob-
jects present in a given scene. Additionally we utilise and
extend the 3D Risk Scenes Dataset (3DRS) designed for risk
evaluation in scene analysis. The effectiveness of our method
is tested on captured point cloud sequences containing haz-
ardous and non hazardous data with a high degree of accuracy
across all tested data.

Index Terms— Scene Analysis, 3DHOG, Real Time

1. INTRODUCTION

Scene analysis is a research area covering a large range of top-
ics with applications in traffic analysis [1], domestic robotics
[2], smart homes [3] and more recently in risk detection [4, 5],
amongst many others. With the recent availability of depth
sensors [6], the extension into 3D comes allows the inference
of information about a scene not possible before.

In this work we consider the problem of evaluating risk in
a three dimensional scene in real time and providing a quan-
tified risk score. This translates into real world applications
such as domestic robotics focusing on providing child care or
supporting elder people by identifying hazardous situations.
Up until now the research has focused on static 3D scenes,
and often on fully realised 3D models of those scenes. This
however does not effectively represent a realistic approach to
the problem, as the intended applications for this research are
unlikely to have access to that quality of data. As such within
his work an attempt has been made to make an analysis on
streamed data from depth hardware.

The definition of a risk or hazard in an environment is
contextual. As an example consider a ball and knife placed
on a table. The position of those objects relative to the edge
means they may be easier to dislodge and therefore present
more of a hazard. However the object itself can add to that
risk; a knife will always have a blade (Figure 1).
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Fig. 1: Scenes of objects with intrinsic properties (e.g. sharp,
pointed) and the goal identification of risky (red) objects ver-
sus safe (blue).

To identify these hazardous properties we utilise the 3D
Voxel HOG feature descriptor based on the principles of His-
togram of Oriented Gradients. With the proposed descriptor
and boosting techniques (Adaboost [7]) we look to classify
the objects as hazardous or not in a realtime situation. This
classification can be used as a basis for a Risk Estimation
Framework that could further define risk based on the wider
context. Importantly object recognition is not the goal, allow-
ing the proposed approach to be more general and operate at
a lower level. In this work we define ‘hazardous features’ as
any structure present in an object that could increase risk.

The paper will continue as follows; in section 2 an analy-
sis of the similar areas of research and related work. An anal-
ysis of the proposed methodologies and processes used will
be presented in section 3. Section 4 will outline the experi-
ment environments and analyse the results. Finally, in section
5 conclusions are drawn.

2. RELATED WORK

2.1. Risk Assessment in Scenes and 3D Descriptors

To date very little research has been done in automated risk
analysis systems. [8, 9] analyse indoor fall assessment for el-
derly adults; here both proposed methods focus on analysing
the person themselves not the risk of the scene. [4] introduces
the notion of analysing the fall potential of objects in a scene
given the influence of environmental events such as human
intervention or earthquakes. However the hazardous features
of the objects themselves are not analysed.

Another emerging area of research within 3D scene anal-
ysis and understanding is Volumetric Reasoning. Here further
information about a scene can be derived by applying certain
logic based algorithms to object clusters in a given volume,
leading to improvements in segmentation and clustering tech-
niques. [10] applies the notion that clusters in a scene should
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Fig. 2: (a) original scene, (b-e) result of acquisition process
and planar removal, (f) voxelization process.
be at rest when simulation techniques are applied. Using an
iterative process object clusters are grouped until such time as
the scene is at equilibrium. [11] proposes a method that better
fits bounding shapes to RGB-D clusters based on the premise
that a good 3D representation of a scene is stable, fits the data
well and is self-supporting. It is worth mentioning the follow-
ing papers that consider similar concepts and approaches for
scene analysis [12, 13, 14, 15]. Although the concept of risk
in the environment is raised in some of this work, a real time
automated form of risk evaluation is not addressed.

Object retrieval and feature selection are research subjects
that have received a huge amount of work in recent years
both in the 2D and 3D domains. The initial concept of HOG
features [16] revolutionized the 2D object recognition world
by creating a local descriptor that was resistant to geomet-
ric and photometric changes. Felzenszwalb [17] proposed a
highly accurate object detection method through the use of
deformable part models and HOG features. Buch in [18] im-
plements a vehicle recognition framework using a patch def-
inition system on a 3D representation of the found vehicle.
This is combined with a traditional two dimensional HOG im-
plementation.

With the introduction of financially viable 3D depth cam-
era hardware, such as the Microsoft Kinect [6], more research
has been focusing in the 3D domain. Transferring Dalal and
Triggs work into three dimensions, Scherer [19] performs gra-
dient computation in 3D using a convoluted distance field.
This provides an effective way of calculating the magnitudes
of the gradients, scoring them highly when localised near a
surface of a model (local maxima). However their method
also scores highly those at local minima creating additional
artifacts within the data making it unsuitable for local feature
recognition. Another example that uses a variation of vectors
within a histogram as a feature is [20]. Here the normal vec-
tors are used as the feature to define an object. Additionally
the following state of the art 3D descriptors should be men-
tioned [21, 22].

3. PROPOSED METHODOLOGY

3.1. Pre-Processing

As analysis is to be in a real time fashion, a sequential set of
frames capturing a scene is used. For each frame a 3D mesh
model reconstruction of the scene is captured using Kinect
2 [23] (Figure 2b). Analysis is done on a frame by frame
basis. As such before the risk in a frame can be evaluated,
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Fig. 3: An overview of the proposed risk assessment frame-
work.
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Fig. 4: The proposed hazard classification system.

pre-processing steps are required to convert the captured mesh
model of a frame into a usable format (Figure 2).

As the angle of the scene changes relative to the recording
device from frame to frame the mesh models must be aligned
to aid the analysis process [24]. Additionally the surface on
which the objects are set requires removal, the work in [25]
provides solutions for these problems. Voxelisation of the
mesh model[26] is then performed. Voxels are defined along
the faces of the scene’s 3D mesh, voxels enclosed within a
mesh are also classified as part of the object, allowing us to
consider features based on an objects’ density (Figure 2c).
The resultant scene volume representing a binary classifica-
tion of either object or not.

3.2. Introduction of a Risk Estimation Framework

Let us define the cumulative risk score R for a scene as the
weighted sum of n risk elements E as

R =

n∑
i=1

wiEi (1)

A risk element is any measure that could highlight po-
tential risk. These elements could include concepts such as
stability [27], hazardous features [5] or other properties, for
example temperature obtained from a thermal camera. Each
element will have an assigned weighting, allowing for the
context of the risk score to be considered. Applying more
weight to elements that are more relevant in a given situation
allows the proposed framework to be extendable as required.
An overview of this framework is shown in Figure 3.

3.3. Hazardous Feature Descriptor - 3D Voxel HOG

The application of three dimensional descriptors to identify
the properties of an object is a new concept, identifiers are
required that allow us to differentiate hazardous objects from
safe. A novel classification problem of recognising sharp and
pointed areas in a scene (hazard features) is introduced. The
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Fig. 5: Example 3D Voxel HOG features from the tip of a
knife blade and face of block, (a,e) visualised on its object in
3D, (b,f) the same 3D representation in two different orienta-
tions, (c,g) as a 2D Histogram and (d,h) as a 162 dimension
feature vector

overall proposed classification approach for hazard areas in
a scene is shown in (Figure 4). To achieve this 3D Voxel
HOG is introduced which extends the original Histogram of
Oriented Gradients for use in the third dimension. 3D VHOG
is suitable for recognition of local shape characteristics and
additionally considers an objects’ density.

The traditional HOG uses the normalized combination of
gradient vectors from a given number of pixels to build up a
histogram of binned angles that relate to the feature. This is
extended into the third dimension though the use of voxels
and 2D histograms. Initially the voxel volume up is divided
into set features spaces f comprised of a number of cubic 3D
cells c, made up of voxels v. For each voxel within a cell the
filter mask [−1, 0, 1] is applied in all three dimensions giving
us the gradient vector ~g.

The magnitude ‖~g‖ of the gradient vector is obtained and
its orientation expressed using azimuth θ and zenith φ angles.

(θ, φ) = (cos−1 (
gz√

g2x + g2y + g2z

), tan−1 (gy, gx)) (2)

A weight w is defined for each voxel, which is used to scale
its contribution to its cell’s 2D histogram. This is given by
the mean value of the voxels within a given three dimensional
kernel indicating the density over this area. By applying this
weight, the proposed approach provides accurate estimates
also in the presence of noise. Due to the local nature of the
proposed feature, issues related to the normalization of a mesh
are avoided, removing a potentially complex pre-processing
step.

Once these values are established the voxels within each
cell are binned into a 2D histogram h according to their θ and
φ angles. The value added to a bin is given as the weighted
magnitude of the vector w‖~g‖. Finally all cell histograms
within a feature hf are normalised using the L2 norm and
finally vectorised.

hf →
hf√

‖~g‖22 + e2
(3)

~x3DVHOG = {h1,1, ..., h1,ϕ, ..., hθ,ϕ} (4)

When visualised, these 2D histograms present a way to
identify differing features within an object (Figure 5c). An-
other form of visualisation plots each possible gradient vector

Fig. 6: Example 3D Voxel HOG visualisations of objects
from the 3DRS Dataset.

within local 3D histograms, showing the most common gra-
dient vectors as stronger (Figure 5a).

These feature vectors are used to create a trained model
that unknown shape features can be tested against. A binary
classification is returned defining the object as either being
hazardous or not. Adaboost is a learning technique that cre-
ates a non linear classifier to separate data into two groups.
Weak classifiers are defined with a final strong classifier be-
ing a combination of these. At each iteration the weak classi-
fiers with the lowest error margin are used to define the next
in a ‘greedy fashion’. Regarding the proposed features in
both cases given N training examples (~x1, ..., ~xN ), the corre-
sponding labels (y1, ..., yN ) with yi ∈ {−1, 1}, and an initial
distribution of weights W1(i) a strong classification model
H(x) is obtained based on the weak classifiers h. The weak
classifiers are trained over a number of iterations Q using the
weights’ distribution Wt. In each iteration the error εt is es-
timated based on the current weights Wt, that are updated
before the next iteration.

Wt+1(i) =Wt(i) exp(−atyiht(xi))/Zt (5)

where at = − 1
2 log(εt/(1 − εt)) and Zt = 2

√
εt(1− εt)

is a normalization factor. The strong classifier is defined as
H(x) = sign(f(x)), where f(x) = ~a·~h(x)

‖~a‖1 .
Regarding the boosting approach, because of the way

weak classifiers are selected a complicated feature problem
can be broken down and classified using a sparse classifica-
tion rule, based on only a few features. This makes compu-
tation much faster as only a subset of the features is used.
This is essential if the methodology is to be implemented in a
real time scenario. Another advantage of this approach is the
explicit minimisation of error, whilst implicitly maximising
the margin. This ensures the final strong classifier is general
avoiding the problems of overfitting.

Finally, in order to define the ‘hazard features’ element
E = D3DVHOG of the risk score R in equation (1) the
obtained outcomes from the classification process above are
utilised.

D3DVHOG =
1

m

m∑
j=1

(∑M
k=1 wDG(j, k)∑M
k=1G(j, k)

)

Dω =
1

m

m∑
j=1

wD(j) (6)

where wD = f(x) normalised and G = 1
2 (sign(f(x)) + 1).
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Fig. 7: Example frame sequence of a table top scene, starting
top left and moving to the right over time.

4. RESULTS

4.1. Experiment Environment

To effectively test this problem we analyse scenes compris-
ing of household objects placed on a table from the 3DRS
Dataset. A scene is defined as a fixed environment from which
a series of sequential frames are recorded. For the duration of
the recording the recording device’s angle and position rela-
tive to the scene is adjusted (Figure 7). 3 Scenes each with
10 frames were captured, aligned and voxelised to a resolu-
tion of 256 cubic voxels according to Section 2. The objects
within the scene are categorised as ‘hazardous’ (bread knife,
kitchen knife, iron, claw hammer) and ‘safe’ (ball, mug, game
controller, condiment bottle). Each scene contains three ob-
jects; importantly objects have been chosen that have vary-
ing heights, this is to ensure that the artifacts created due to
the depth shadows behind objects are included in the dataset.
This ensures that the data used is challenging to the method-
ology. As each frame represents the scene from a different an-
gle the depth shadow cast by the objects changes from frame
to frame. Additionally no effort is made to derive context
between frames, ensuring the system does not reply on any
temporal knowledge of the scene to make an analysis.

4.2. Hazard Features Evaluation

Here we evaluate the risk level of each frame using an object’s
‘hazard features’. Using the 3D VHOG descriptor, features
for each frame in each scene were defined and the groundtruth
manually labeled at a cell level. For a comparison the features
for another state-of-the-art 3D descriptor was also extracted
and evaluated. In the proposed 3D Voxel HOG method a
number of variables are defined. Based on experimental re-
sults the values for a feature block and cell size were set; 2
cubic cells and 16 cubic voxels respectively. The bins for the
2D histogram were set at 18 for θ and 9 for φ.

Once extracted, the histogram data from each feature (8
cells) was arranged into a mean 162 dimension feature vector
for training using Adaboost. Training was done on one frame
from each scene and a single model was used to evaluate the
remaining 27 frames. The results for all the descriptors are
summarised in table 1. Results are defined at an object level.
One of the most important aspects of a risk evaluation sys-
tem is that a hazardous object is not falsely classified as safe.

Feature F1 Sensitivity Accuracy
Scene 3D HOG 0.783 1.000 0.815

1 FAST IM 0.600 1.000 0.556
Scene 3D HOG 0.900 1.000 0.926

2 FAST IM 0.667 0.500 0.667
Scene 3D HOG 0.824 1.000 0.778

3 FAST IM 0.824 1.000 0.778

Table 1: Feature comparison against other existing 3D de-
scriptors.

Object B C K Bk M I H Cb
3D VHOG 0.2 0.3 1 1 0.1 0.6 1 0.3
FASTIM 0.3 0.9 1 1 0.1 1 0.9 0.2

Table 2: Risk Score calculated for each object used in the test
scenes

Therefore it is essential that the sensitivity of the classifier is
as high as possible.

Figure 8 demonstrates that regardless of the features
utilised the F1 scores stay consistent throughout the duration
of the sequence indicating that accuracy is not lost over time.

Since the ‘hazard’ features of the testing objects have been
estimated based on the proposed 3D VHOG descriptor and
the classification mechanism, the level of risk based on the
objects’ characteristics is obtained using the equation 6. The
obtained results using equation 1 for the tested objects are
shown in table 2 indicating that the proposed method provides
reasonable and accurate estimates.

5. CONCLUSIONS

In this work the concept of risk analysis is considered for 3D
scenes in real time. The 3D Voxel HOG descriptor is utilised
to represent the intrinsic properties of the objects and com-
pared with other state of the art features, provided the highest
accuracy. The ability to define hazardous objects through the
use of the Risk Estimation framework has been demonstrated.
The level of accuracy achieved indicates that there is great po-
tential for the measurement of risk in real time applications.
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Fig. 8: Average F1 Score of each tested feature per frame
across all scenes
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