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Source recording device matching from two speech recordings is a 
new and important problem of digital media forensics. It aims to 
answer the question that whether or not two speech recordings are 
recorded by the same recording device. In this study we propose a 
source cell phone matching scheme. The Gaussian supervector 
(GSV) based on Mel-frequency cepstral coefficients (MFCCs) is 
extracted from the speech recording and is sparse represented with 
respect to a dictionary learned by K-SVD algorithm. The reduced-
dimensional sparse representation coefficient is utilized to 
characterize the intrinsic fingerprint of the recording device. Then, 
KISS metric learning based similarity matching is conducted on a 
pair of fingerprints extracted from the two speech recordings. 
Evaluation experiments were conducted on a database of speech 
recordings recorded by 14 cell phones. The experimental results 
demonstrated the feasibility of the proposed scheme. 

Index Terms— Digital audio forensics, Source recording 
device matching, KISS metric learning, Sparse representation. 

 
Recognition of the source recording device from the speech 
recordings would prove useful in the court for establishing the 
authenticity of speech recordings presented as evidence [1, 2]. 
Over the past several years, source recording device recognition 
has gained more attention. The literature is largely clustered into a 
few specific problems such as source microphone identification [3-
10], source telephone handset identification [10-16], source mobile 
device identification [16-21] and source cell phone verification [21, 
22]. For example, Hanilçi  [18] firstly tried to identify the 
brands and models of cell phones from the speech recording using 
Mel-frequency cepstral coefficients (MFCCs) and support vector 
machine (SVM). More recently, Zou  presented a source cell 
phone verification scheme based on sparse representation [22]. 

Most studies focus on the source recording device recognition 
problem. To our best knowledge, there are no studies which have 
focused on the source recording device matching problem. As 
illustrated in Fig. 1, given two speech recordings, source recording 
device matching aims to determine whether or not the two speech 
recordings are acquired by the same recording device without 
having to know the specific device unit. This problem is full of 
realistic significance in the forensic context. For instance, in some 
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Fig. 1. Illustration of source recording device matching problem. 
 
cases the recording device is unavailable or unusable (e.g., has 
been damaged) for the court, also in some cases we don’t care 
about the specific recording device and only want to know whether 
the two speech recordings are recorded by the same device. This 
problem is similar to the source recording device verification 
problem in [22]. However, the difference is that, in the latter case, 
the claimed recording device is supposed to be known and 
available which means that we can obtain sufficient examples 
acquired by the recording device. It will benefit for the subsequent 
verification task whereas this doesn’t hold for the source recording 
device matching task because there are only two speech recordings 
available here. Therefore, the available information quantity for the 
matching task is less and the methods for source recording device 
verification may not be well suited for source recording device 
matching problem. 

Motivated by the forensic significance and characteristic of 
source recording device matching, on the other hand, considering 
the fact that the wide availability of cell phone signifies that there 
will be lots of evidences in the form of digital speech recordings 
taken to court. Thus, in this study we take cell phone as the 
representative recording device and try to address this new 
problem, i.e., source cell phone matching from speech recordings. 
Given two speech recordings, for each speech recording, the 
Gaussian supervector (GSV) is extracted. It is sparse represented 
with respect to a dictionary learned by some kind of learning 
algorithm (here K-SVD). The reduced-dimensional sparse 
representation coefficients are utilized to represent the intrinsic 
fingerprint of the recording device. Then, the similarity matching is 
conducted by computing the KISS metric [23-25] based distance 
between the fingerprints extracted from the two speech recordings. 
The performance of the proposed scheme is evaluated on a 
database of speech recordings recorded by 14 cell phones. 

The rest of the paper is organized as follows. In section 2, the 
method of this study is described. Section 3 details the 
experimental set up in this paper. Section 4 presents the 
experimental results and discussion. Finally, future work and 
conclusions are summarized in Section 5. 
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Fig. 2. Block diagram of extraction of recording device fingerprint from a speech recording. 
 

GSV has shown success in representation of the intrinsic 
fingerprint of a recording device from speech recordings [10]. 
Extracting GSV from a speech recording is conducted as follows: 
Suppose that UBM 1{ , , }  is a diagonal covariance 
universal background model (UBM) with mixtures, given an 
speech recording and suppose that the corresponding feature 
vectors (MFCCs in this study) extracted from it is 1{ } , then, 
the means adapted Gaussian mixture model (GMM) is updated 
from the UBM by   (MAP) [26]. Suppose that 

1{ , , } and 1{ , , } are the obtained 
means adapted GMMs corresponding to two speech recordings, 
then the Kullback-Leibler (KL) divergence kernel is defined as the 
corresponding inner product of the two GSVs which is a 
concatenation of the weighted mean vectors from each mixture of 
the GMM [27]: 

(1/ 2) (1/ 2)
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In the statistical signal processing field, given an overcomplete 
dictionary  ( << ) which is made up of base 
elements (a.k.a. atoms), an input signal  can be represented 
by the sparse linear combination of these atoms: .  
Here, is the sparse representation coefficient with majority 
of the entries are zero. 

Given a training vectors set 
1
 (here  is the 

GSV in this study), the K-SVD algorithm [28] searches for the best 
possible dictionary  for the sparse representation of  by solving

2
02 0, 

min - subject to x              (2) 

where  is the corresponding sparse representations to  and 0 is 
the sparsity constraint. Once  is determined, the input vector 
can be sparsely represented with respect to using the basis 
pursuit (BP) approach [29] by solving 
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ˆ arg min subject to                (3) 
where 1̂  is the obtained sparse representation coefficient. 

The dimensionality of the sparse representation coefficient is 
usually high. To make it tractable for distance metric learning 
algorithm, we use PCA [30] to conduct dimensionality reduction. 
Suppose that PCA  ( < ) is the obtained feature extractor 
after principle component analysis to original high dimensional 
feature space, then the low dimensional feature can be obtained by 

PCA 1̂                                          (4) 
where is the low-dimensional representation of high-
dimensional sparse coefficient 1̂.   is used as the intrinsic 
recording device fingerprint in this study. The whole extraction 
procedure for this type of device fingerprint is illustrated in Fig. 2. 
 

Suppose that  and are a pair of feature samples, Mahalanobis 
distance metric measures the distance between the pair of samples 
as: 

2 ( , ) ( ) ( )                     (5) 
where  is a positive semidefinite matrix. From the viewpoint of 
KISS metric learning [23], the similarity of a pair of samples 
( , )  can be determined using the log likelihood ratio based on 
a statistical inference perspective: 

0

1
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                      (6) 

where 0  and 1  stand for the hypothesis that the pair of samples 
are dissimilar and similar respectively. Assuming has 
zero-mean Gaussian distribution, then the problem can be casted 
into 
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where is the pdf with parameters 1  for hypothesis 1 and 0  for 
hypothesis 0 . Under the Gaussian assumption, the parameters of 
the two distributions are 1 1(0, ) and 0 0(0, )  where 

1
1
( )( ) ,                       (8) 

0
0
( )( ) .                     (9) 

After taking the log, equation (7) can be re-formulated as 
1

11
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Neglecting the constant terms, we get 
1 1

1 0

KISS

( ) ( )

( ) ( ).
                (11) 

In this study, suppose that 1  and 2  are the recording device 
fingerprints extracted from two speech recordings as shown in Fig. 
2. Once the matrix KISS of the KISS metric learning is obtained 
on a training set, we can calculate the KISS metric based distance 
between 1 and 2 as 

2
1 2 1 2 KISS 1 2( , ) ( ) ( ) .              (12) 

Besides the KISS metric, the conventional Mahalanobis distance 
(  is set to the covariance matrix), the cosine kernel metric: 

1 2

1 2

,
                                   (13) 

and the correlation metric: 
1 1 2 2

1 1 2 2

( ) , ( )
                         (14) 

are also considered for reference. 

 
 
We evaluated the proposed source cell phone matching scheme on 
a database of speech recordings from 14 cell phones [18, 22]. 
Table 1 shows the detail of the cell phones in this database. The 
database was collected by two means and each resulted in a subset. 
The first subset was obtained by playing a subset of the TIMIT 
corpus through all the 14 cell phones in a silent environment using 
a loudspeaker. This subset contains 24 speakers and there are 10 
sentences for each speaker. Thus there are 240 speech recordings 
for each cell phone (120 recordings for training UBM and 
dictionary, 60 recordings for KISS metric learning and the 
remaining 60 recordings for final matching testing). The duration 
for each recording is approximately 3 seconds. Apart from TIMIT 
subset, the second subset was collected by recording a speaker 
speaking into the above 14 cell phones a passage of approximately 
10 minutes in the same room. Then, each recording was evenly 
segmented into 200 recordings each with the duration of 
approximately 3 seconds. Thus there are 200 speech recordings for 
each cell phone (100 recordings for training UBM and dictionary, 
50 recordings for KISS metric learning and the remaining 50 
recordings for final matching testing). This subset is referred to as 
LIVE hereafter. 

When we carried out experiments on TIMIT subset, the 
training part of LIVE subset (collecting the training part of all cell 
phones) were utilized for training the UBM and vice versa. For the  

Table 1. Brands and models of the cell phones in the experimental 
database. 
 

BRAND MODEL 
SAMSUNG E250, E250, D900 
NOKIA 2730, 6500, 3600, 3600, 6670 
MOTOROLA Q 
SONY W880, W880, K750I 
LG KE970 
HP IPAQ514 

 
Table 2. Statistics of matched and unmatched trials in the matching 
experiment. 
 

Subsets Device 
number 

Recordings 
per class 

Matched 
testing 

Unmatched 
testing  

TIMIT 14 60 24780 327600 
LIVE 14 50 17150 227500 

 
Table 3. EERs (in %) for different matching methods (here, the 
fingerprint dimensionality is 100). 
 

Matching metrics TIMIT LIVE 
KISS metric 
correlation 16.59 20.13 
cosine 16.58 19.86 
conventional Mahalanobis distance 35.13 38.16 

 
current experimental subset, the training part of this subset was 
utilized for learning the dictionary. Specifically, the statistics of the 
final matching number of the two subsets in one experiment are 
listed in Table 2. 

For each speech recording, the whole utterance, including 
speech segments and non-speech segments, was segmented into 
frames by a 30 ms Hamming window with an overlap of 50%. 12 
MFCCs were computed using 27 triangular filters with c0 
excluded. The MFCCs were concatenated with the energy feature 
and resulted in a 13-dimensional feature vector. The number of 
mixture components in UBM was set to 32, therefore the 
dimensionality of the GSV was of 416. The size of the learned 
dictionary is set to 416 1260  in this study, this set also 
guaranteed that the dictionary is redundant and overcomplete. 
 

Firstly, we carry out matching experiments on two subset using 
KISS metric and other three types of metrics. The matching 
number is in accordance with Table 2. The dimensionality of the 
fingerprint is set to 100. The experimental results are illustrated in 
Table 3 and Fig. 3. Table 3 shows the achieved Equal Error Rates 
(EERs) when utilizing different matching methods. It can be 
observed that the KISS metric obtains the best matching 
performance compared to the other three methods especially on the 
TIMIT subset where the EERs relatively decreased about 46.7% 
compared to correlation and cosine metric, and 74.8% compared to 
conventional Mahalanobis distance. It shows the effectiveness of 
the KISS metric based matching to this problem. The 
corresponding Receiver Operator Characteristic (ROC) curve is 
illustrated in Fig. 3. In addition, we can also find that the cosine 
kernel metric and the correlation metric yield so close results that  
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(a)                                                                                          (b) 
Fig. 3. The matching results when the fingerprint dimensionality is set to 100. (a) ROC curves obtained on TIMIT subset and (b) ROC 
curves obtained on LIVE subset. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                            (b) 
Fig. 4. The EERs for different fingerprint dimensionality. (a) results on TIMIT subset (b) results on LIVE subset. 
 
the ROC curves for them are almost overlapped. 

For evaluating the influence of reduced dimensionality to the 
matching performance, we also conducted experiments when 
different subspace dimensionality of device fingerprint are utilized. 
It can be observed from Fig. 4 that the KISS metric is much 
influenced by the feature dimensionality compared to cosine metric, 
correlation metric and the conventional Mahalanobis distance 
metric. The overall tendency of the matching results when KISS 
metric is utilized is that the larger the feature dimensionality, the 
more arising the matching error. The reason may be due to that a 
higher dimensional feature subspace means that more data will be 
needed for learning an accurate KISS metric matrix KISS.  
However, the amount of training data is limited and fixed in this 
study, therefore, the KISS will tend to be more accurately learned 
in a relatively low-dimensional feature subspace. Nevertheless, it 
can also be observed from Fig. 4 that the KISS metric still 
outperforms the other three metrics almost on all feature 
dimensionalities in the experiments. 

This is a preliminary study of source cell phone matching 
problem. It should be noted that this study focus only on one type 
of recording device, i.e., cell phone. However, it is possible that 
the proposed scheme could be extended to other types of recording 
device like tablet, voice recorder etc. 
 

In this study we try to address a new problem of source cell phone 
matching from speech recordings and propose a scheme which is 
based on sparse representation and KISS metric learning. The 
KISS metric outperforms the cosine kernel metric, the correlation 
metric and the conventional Mahalanobis distance to this problem. 
We also investigate the influence of fingerprint dimensionality to 
the matching performance and find that the KISS metric is much 
influenced compared to other three types of metrics when the size 
of the training set for KISS metric learning is fixed. The larger 
feature dimensionality requires more training data for learning an 
accurate KISS metric matrix  To sum up, we propose a source 
cell phone matching scheme in this study. Future work includes 
extending the experimental database and further enhancing the 
matching performance. 
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