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ABSTRACT

In this paper, we present a new algorithm for open-set micro-
phone classification, which is based on a pre-existing blind
channel estimation approach. The proposed method achieves
a Rand index above 93% for AAC, MP3 and PCM-encoded
recordings from eight different mobile devices.

Index Terms— microphone classification, audio foren-
sics, open-set classification.

1. INTRODUCTION

Microphone classification is becoming an increasingly rele-
vant topic within the audio forensics domain. It can e.g. be
used to support the process of authenticating recordings and
detect manipulations, to verify claims of ownership, or for
automatic annotation of metadata about acquisition devices
in A/V archives.

Initial microphone classification approaches used to tar-
get a broad range of recording devices [1–4], while recent
ones focus more on mobile devices [5–9]. This change of
focus is related to changed requirements for investigations
and journalism: User-generated recordings made with lower-
quality mobile recording devices, then to be distributed and
shared using social networks, are becoming increasingly rel-
evant [10].

Overall, performance of State-of-the-Art algorithms for
microphone classification has steadily improved over time:
While the first proof of concept by Kraetzer et al. [1] reached
a maximum overall accuracy of ≈ 76%, most recent ap-
proaches by Aggarwal [8] and Jahanirad [9] achieved an
accuracy of ≈ 90% and ≈ 99%, respectively. However,
all State-of-the-Art approaches are based on a ”closed-set
assumption”: The classifiers can only handle content from
previously known devices, i.e., they need to be trained on a
predefined device set and are not suited to classify content
from arbitrary, previously unknown recording devices. This
limits applicability in many real-life usage scenarios.

In the following, we present an open-set classification ap-
proach, which is based on previous work on microphone clas-
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sification and discrimination via blind channel estimation: In
[7], we proposed a feature vector for SVM-based closed-set
microphone classification, and successfully applied it to audio
tampering detection. In [11], the feature vector was applied
to the more general case of microphone discrimination, by
using it to confirm or deny the existence of a device change
at a specific location within the recording. This approach,
which is suited for an open-set context in principle, was now
improved to provide an unsupervised open-set approach for
microphone classification. It is based on a space transform
that significantly improves accuracy of the method described
in [11]. The proposed approach is not bound to a training set,
and it incrementally creates new device classes whenever con-
tent from previously unknown recording devices is detected.

The following paper is structured as follows: Section 2 de-
scribes a baseline and an enhanced algorithm for microphone
discrimination. Section 3 presents the proposed open-set al-
gorithm for microphone classification. The testing procedure
and the results are outlined in Section 4. Section 5 concludes
by summarizing the work and providing an outlook to possi-
ble future improvements.

2. ALGORITHM FOR MICROPHONE
DISCRIMINATION

2.1. Baseline algorithm

The performance of the microphone classification approach
described in Section 3 depends on the accurate discrimination
of audio content recorded by different devices. A baseline ap-
proach for this was provided in [11], where microphone dis-
crimination was used to enhance an audio tampering detection
algorithm based on stable tone analysis. It is described in the
following.

Let (x1, x2) denote a pair of input recordings, and
(h1, h2) the frequency responses of the respective micro-
phone devices (X1, X2).

The baseline algorithm for microphone discrimination re-
lies on the assumption X1 = X2 ⇐⇒ h1 = h2 in order to
distinguish between the two cases X1 = X2 and X1 6= X2:

1. Compute (ĥ1, ĥ2) from (x1, x2) as described in [7, 11,
12]. ĥ1 and ĥ2 represent the estimates of the real fre-
quency responses h1 and h2, respectively.
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2. Derive from each channel estimate ĥj a feature vector
fj , equivalent to the feature vector f defined in [7, 11].
fj is an high-level representation of a microphone, and
embeds both information about the estimate ĥj , and
about the power spectrum of the input recording xj .

3. Evaluate the estimated device similarity by computing
the Parson’s correlation coefficient ρ(f1, f2) between
the two vectors f1 and f2:

ρ(f1, f2) =
1

n−1

n∑
i=1

(
f1(i)−f̄1

sf1

)(
f2(i)−f̄2

sf2

)
where sf1

and sf2
denote the standard deviations of f1

and f2, both of length n. f̄1 and f̄2 represent their mean
values.

4. If ρ(f1, f2) ≥ τ , with τ being a user defined threshold,
then x1 and x2 are considered as being recorded by the
same microphone.

The described baseline algorithm is straightforward, and pro-
vides the advantage that each file can be processed indepen-
dently and in parallel, up to the computation of ρ(f1, f2).

If two different devices were used to record x1 and x2,
however, a single comparison is not ideal: The analysis of
segments containing content recorded by the two devices can
provide useful information, and hence lead to better results,
even if the frequency estimates of both files differ. This in-
sight led us to the development of an enhanced discrimination
approach described in the next Section 2.2.

2.2. Enhanced algorithm

The enhanced algorithm for microphone discrimination is
also based on the blind channel estimation procedure pro-
posed by Gaubitch [12, 13]. However, it is not applied to
the two input files x1 and x2 independently, but to the file
x := x1 ◦ x2 that is obtained by splicing the two files. The
base assumption is that the outcome of the channel estimation
in [12,13], if applied locally to separate overlapping intervals
of the spliced file, will remain almost constant in the case
of both files being recorded by the same device, and it will
show significant deviations otherwise. The procedure can be
formalized as follows:

1. Splice x1 with x2, to obtain a single input file x.

2. Divide x in several overlapping frames, using a fixed
window length L and hop size D.

3. Compute one channel estimate ĥj per each frame, ob-
taining the set Ĥ = {ĥ1, . . . , ĥM}. The order of the
channel estimates ĥj ∈ Ĥ is time-aware, i.e., ĥj−δi
starts δi ·D seconds before ĥj .

4. Compute several vectors vδi , storing the Parson’s cor-
relation coefficient ρ(·, ·) between every existing pairs
of estimates with displacement equal to δi:

vδi(j) = ρ(ĥj , ĥj+δi) , with vδi ∈ RM−δi ,

where δi = δ1, . . . , δ∆ is the displacement between
the channel estimates, M is the number of channel es-
timates, and 1 ≤ δ1 ≤ δ∆ ≤ M−1, with δi ∈ N. The
length of each vδi decreases as δi increases, since the
number of available pairs is lower.

5. All the information in the set V = {vδ1 , . . . , vδ∆} can
be reshaped by means of a space transformation

T : V 7→ R(M−δ1)×( ∆
2 ·(∆−1)),

where ∆ = (δ∆ − δ1 + 1). As also shown in Figure 1,
T is a function that concatenates Toeplitz-matrices
(V ∈ R(M−δ1)×(δi−δ1+1)) of vectors vδi for all δi:

T := V (vδ1) ◦ V (vδ2) ◦ · · · ◦ V (vδ∆).

The Toeplitz-matrices are built as follows:

Vi,j = Vi+1,j+1 :=

{
vδ·(j − i), if ∃vδ·(j − i) ∀(i, j)
1, if @vδ·(j − i) ∀(i, j)

6. Compute the vector y ∈ RM−δ1 , characterizing the
inter-similarity between adjacent time intervals of the
spliced input file:

y(i) =
1

∆
2 (∆− 1)

∆
2 (∆−1)∑
j=1

Y (i, j) , with Y = T (V) .

Every element y(i) describes the similarity between the
estimated frequency response of two non-overlapping
intervals with L seconds duration, which end and start,
respectively, at the time instant t = D · (δ1 + i).

Fig. 1. Visualization of the space transform T(V)
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7. Evaluate the value ȳ of the detection function y(t) at
the splicing point: If ȳ ≥ τ , with τ being a user de-
fined threshold, then x1 and x2 are considered as being
recorded by the same microphone.

Figure 2 provides a visual comparison between the proposed
detection function y(t) with δ1 < δ∆, the particular case of
y(t) computed with δ1 = δ∆ and the correlation coefficient
ρ(f1, f2) involved in the baseline algorithm from [11].
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Fig. 2. Visual comparison of the detection functions

If y(t) is computed in its degenerate form, i.e., δ1 = δ∆ =
floor( LD ), then ȳ ' ρ(f1, f2), as evident by comparing the
blue line with squares and the black diamond in Figure 2.

For δ1 < δ∆ the function y(t) becomes smooth, and the
value of ȳ decrease significantly in presence of a different de-
vice. The red line with circles in Figure 2 was obtained by
setting L = 5 s, D = 0.25 s, δ∆ = δ1 + 10 and ĥj ∈ R512.

Due to the significant improvement regarding discrimina-
tion, this enhanced version of the algorithm was selected for
the further work, despite being computationally more expen-
sive than the baseline approach: Given two input files x1 and
x2, both with at least L seconds duration, at least floor( LD )
frequency estimates need to be computed, while the baseline
algorithm only requires 2 of them. However, the complexity
increase is linear, which means that parallel computing could
be effectively applied to reduce its impact.

3. OPEN-SET MICROPHONE CLASSIFICATION

The open-set classification approach was designed as fol-
lows: Let X =

{
x1, x2, . . . , xN

}
be a set of N unlabeled re-

cordings from K different microphones {X1, X2, . . . , XK}.
The goal of a classic classification algorithm is to partition

X into disjoint subsets X1,X2, . . . ,XK , so that the following
conditions hold:

1. ∪Kk=1Xk = X

2. k 6= l =⇒ Xk ∩ Xl = ∅

3. Xk 6= ∅ ∀k ∈ [1,K]

4. xi ∈ Xk ⇐⇒ Xk → xi

where X → x implies that x was recorded using the micro-
phone X .

Let ȳij denote the value of the detection function y(t)
evaluated at the splicing point of the recording yij created by
splicing together the two recordings xi and xj , as described
in Section 2. After fixing the optimal global threshold τ∗, an
additional condition that reflects our specific system charac-
teristics should be considered:

5. ∃τ∗ : ȳij ≥ τ∗ ⇐⇒ xi, xj ∈ Xk.

I.e., the partition is directly induced by the value of the detec-
tion function.

The proposed algorithm for open-set classification does
not require any previous knowledge about the number of input
recordings N or the amount of devices K, since both may
increase over time. As a consequence, no training is required,
and only one parameter, namely τ∗, must be set.

Starting from a completely new system, where no record-
ing was ever annotated before, the complete procedure can be
described as follows:

1. Label the first recording x1 as coming from the device
X1: X1 =

{
x1
}

.

2. Store the x1 as the reference recording for class 1:
x1 = x1

3. For each following recording xj :

(a) k̄ = −1

(b) for each pre-existing class k, uniquely identified
by Xk:

i. Splice xj with the reference recording xk

ii. Compute the value ȳjk of the detection func-
tion y(t) at the splicing point

iii. If ȳjk < τ∗ set k = k + 1 and try with the
following class

iv. Else set k̄ = k, and stop the loop

(c) If k̄ = −1 create a new class:

i. Xk+1 =
{
xj
}

ii. xk+1 = xj

(d) Else update the k̄-th class:

i. Xk̄ = Xk̄ ∪
{
xj
}

ii. xk̄ = select-reference-recording(Xk̄)

Where the function select-reference-recording(X ) is com-
puted as follows:

1. j̄ = −1, ȳ = −∞

2. for each recording xj ∈ X :

(a) Compute y(t) from xj , and its mean value 〈y(t)〉
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(b) If 〈y(t)〉 > ȳ

i. ȳ = 〈y(t)〉
ii. j̄ = j

3. Return the best reference recording x = xj̄

The algorithm is greedy: The first class fulfilling the require-
ment ȳ ≥ τ∗ is selected, following the assumption ȳij ≥
τ∗ ⇐⇒ xi, xj ∈ Xk.

This choice also reduces the average running time of the
system: If K is the amount of already detected classes, the
average amount of comparisons needed to classify a new file
is equal to (K + 1)/2.

4. RESULT ANALYSIS

The performance of the proposed approach was evaluated by
using audio files recorded with 8 different devices and includ-
ing 11 different codec and bitrate combinations, as shown in
Table 1 and Table 2.

Table 1. Recording devices used

Label Model

1 Dell Latitude D630, built-in microphone
2 Dell Latitude D630, headset
3 Google Phone G2, built-in microphone
4 Google Phone G2, headset
5 iPhone 4S, built-in microphone
6 iPhone 4S , headset
7 Samsung Galaxy S II, built-in microphone
8 Samsung Galaxy S II, headset

Table 2. Codecs / bitrates used
Encoding Bitrate (kbps)

PCM 768 (48 kHz, mono, 16-bit)
MP3 256, 192, 128, 96, 64
AAC 192, 128, 96, 64, 32

19 test utterances of 10 s from four different speakers were
recorded by each device in three different environments. Be-
fore testing, the global threshold parameter τ∗ = 0.98 used
by the microphone discrimination algorithm (see Section 2.2)
was determined for a small set of 8 original and unencoded
recordings per device. In order to avoid any interdependency
between the two phases, this tuning was performed by using
recordings from different devices, not listed in Table 1.

The outcome of the algorithm was evaluated by us-
ing Rand Index (RI) [14], Normalized Mutual Information
(NMI) [15], and F-measure (Fβ) [16]. In order to penalize
false negative errors, i.e., recordings from the same device

being assigned to different classes, we set β = 5. The re-
sults achieved by the baseline and the enhanced algorithms,
evaluated separately for every codec/bitrate combination, are
shown in Table 3.

Table 3. Classification Results

Encoding Baseline Proposed

RI NMI F5 RI NMI F5

PCM 0.94 0.86 0.85 0.99 0.97 0.95
MP3256 0.92 0.80 0.78 0.99 0.98 0.96
MP3192 0.93 0.87 0.89 0.99 0.98 0.96
MP3128 0.96 0.91 0.94 0.97 0.93 0.91
MP396 0.90 0.80 0.72 0.97 0.94 0.91
MP364 0.90 0.77 0.80 0.98 0.91 0.88
AAC192 0.94 0.85 0.84 0.99 0.96 0.94
AAC128 0.94 0.87 0.88 0.99 0.96 0.95
AAC96 0.92 0.80 0.77 0.99 0.95 0.93
AAC64 0.94 0.87 0.86 0.99 0.96 0.94
AAC32 0.83 0.67 0.78 0.94 0.87 0.85

As evident from the results, the enhanced algorithm out-
performs the baseline. The lower NMI of the baseline ap-
proach, in particular, is due to the incorrect assignment of
recordings from different devices to the same classes. Both
methods assigned only few recordings to isolated classes,
which reflects directly on the F5 scores. A general decrease
of performance can be observed for lower bitrates, and espe-
cially so for AAC 32 kbps, but the accuracy of the partitioning
produced by the proposed enhanced algorithm remains high,
as reflected in the RI.

5. CONCLUSIONS AND OUTLOOK

To the best of our knowledge, the described work represents
the first microphone classification approach for an open-set
scenario. Being designed for user-generated content, as most
other recent approaches in the field [5–9], the approach was
tested using recordings from mobile devices, applying com-
mon codecs and bitrates.

While being computationally expensive, the proposed al-
gorithm achieved a high RI ≥ 94%, independently from the
involved scheme, despite using a feature with only one dimen-
sion. Scalability aspects with respect to the amount of input
data were also taken into account - they are directly related to
the amount of detected classes.

Future work will include the investigation of how the en-
hanced approach for microphone discrimination can be ap-
plied to audio tampering detection, and enhancement of chan-
nel estimation quality as e.g. suggested in [13]. Furthermore,
the applicability of the proposed approach for microphone
verification purposes, using a likelihood measure, will be in-
vestigated.
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