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ABSTRACT

In this paper, we propose a new method for AAC encoding
detection and bitrate estimation from PCM material. The al-
gorithm is based on a Convolutional Neural Network that can
distinguish between eight different bitrates. It achieves an av-
erage accuracy of 94.65% by analysis of only 116.10 ms of
content.

Index Terms— AAC encoding detection, bitrate estima-
tion, audio quality control, Convolutional Neural Network

1. INTRODUCTION

Considering today’s complex media production workflows,
and the exchange of content among providers, archives,
broadcasters etc., it is not uncommon to have unintended
or undocumented encoding steps within the content lifetime.
This can lead to quality issues or redundant storage. In order
to address this problem, it is useful to have algorithms for
detecting previous encoding steps and estimate the applied
bitrates (including higher bitrates, as applied for archival pur-
poses) based on an analysis of the decoded content. Such
information can be used e.g. to avoid unintended double
encoding or further processing of material in production
workflows, to select superior quality items among percep-
tual duplicates, or to reencode material to save storage space
without compromising quality.

AAC [1] is one of the most popular audio codecs, be-
ing used e.g. by Apple iTunes, Youtube, and within DVB
and DAB standards, and hence an important candidate for re-
spective algorithms. However, while several approaches for
single and double MP3 encoding detection exist [2–5], only
few methods address AAC: Jin et al. [6] investigated double
AAC encoding detection within AAC content, which is sig-
nificantly different from detection in decoded material. Gaert-
ner at al [7] provided a framing grid analysis approach in-
cluding AAC, however focusing on tampering detection and
hence not addressing bitrate estimation. Finally, Luo et al. [8]
presented a method for AAC single encoding detection from
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uncompressed PCM files, albeit evaluated only for lower bi-
trates.

In this paper, we propose a new method for AAC en-
coding detection and bitrate estimation from decoded con-
tent, based on a Convolutional Neural Network (CNN). The
method achieves an accuracy of 94.65% for only 116.10 ms
of analyzed material, and 97.90% for 2 s of analyzed material.

The paper is organized as follows: Section 2 introduces
Convolutional Neural Networks (CNNs) and their relevance
for AAC encoding detection. Section 3 describes the over-
all approach, including topology and parameters of the CNN.
The evaluation approach and results are presented in Sec-
tion 4, and Section 5 closes with a summary and ideas for
further improvements and work.

2. CONVOLUTIONAL NEURAL NETWORKS

According to [9], GPU-based feed-forward CNNs are one of
the current de-facto standards for Neural Networks (NNs):
Such networks, first presented in [10], were successfully ap-
plied e.g. to image classification [11], multi-digit number
recognition [12] and video classification [13].

Feed-forward NNs can be seen as a complex structure,
where the l-th layer receives an input o(l−1) from the previ-
ous layer, computes an activation z(l) = gl(o

(l−1)), and pro-
duces an output o(l) = fl(z

(l)). The specific type of layer is
uniquely determined by both the input function gl(·) and the
output function fl(·). While in standard feed-forward NNs,
each neuron of a specific layer is connected to every neuron of
the previous layer. CNNs, in contrast, have neurons being lo-
cally connected to overlapping regions of the input by means
of weight sharing [10].

2.1. Relevance of CNN for AAC encoding detection

Modified Discrete Cosine Transform (MDCT) coefficients are
a key information carrier for AAC encoding detection, as ev-
ident from previous work on AAC and MP3 encoding detec-
tion [2–6,8]: All approaches rely on the analysis of quantiza-
tion traces left on MDCT coefficients during encoding.

Luo et al. [8] use pre-existing MP3 detection features
based on band-pass filtering of MDCT coefficients [5], and
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extended it for AAC detection, thereby also using Mel-
Frequency Cepstral Coefficients (MFCCs) and their first
and second derivatives. As a consequence, the respective
classification is based on a complex description of local inter-
connections between adjacent frequency-bins.

Jin et al. [6] address double AAC encoding detection with
an algorithm that operates directly in the compressed domain,
based on the analysis of transitions of Huffman Codebooks
for consecutive frames. Their findings suggest that the evolu-
tion in time of quantized frames may be related to the applied
encoding.

If we consider the matrix of MDCT coefficients as an im-
age, with the y-axis corresponding to the time domain, and
the x-axis corresponding to the frequency domain, the intrin-
sic local connectivity of the CNNs is a very useful property:
It allows us to address local interconnections in the frequency
domain and in the time domain, thus exploiting the findings
in both [8] and [6]. Moreover, the existence of several hidden
layers provides robustness with respect to content variability.

3. PROPOSED ALGORITHM

The proposed algorithm consists of two consecutive phases:

1. Extraction of quantized MDCT coefficients, as de-
scribed in Section 3.1; without this step, the input
MDCT coefficients would not expose quantization
traces, thus invalidating the whole procedure.

2. Application of a CNN to determine whether the input
file was previously encoded with AAC, as described in
Section 3.2, also estimating the bitrate that was used.

3.1. Extraction of quantized MDCT coefficients

The AAC standard [1] requires the use of sine or kbd (Kaiser-
Bessel derived) window shapes and 4 possible sequences
(long, long-start, 8-short, long-stop), for a total number of 16
possible combinations (2 shapes × 4 sequences × 2 sides of
each window).

As a consequence, the correct retrieval of quantized
MDCT coefficients from decoded AAC files is not trivial.
Several conditions need to be met, namely:

1. The extraction must happen on the same framing grid
used during the encoding.

2. The left and the right shape of the applied window func-
tion must be correct.

3. The window sequence of the applied window function
must be correct.

Let us denote with x the input file and with X ∈ RL×1024

its quantized MDCT coefficients. In order to compute the L
frames of X the following operations are performed:

1. Identify the framing grid offset ogrid by applying the
approach from Gärtner et al. [7], and erase the first
ogrid samples of x.

2. Compute the MDCT coefficients of every possible
combination c, obtaining the set of MDCT matrices
X = {Xc}, Xc ∈ RL×1024.

3. Compute the amount of zero coefficients zcl and the
number of unique values ucl for the l-th rowXc

l of every
Xc.

4. Build X incrementally, by selecting for each frame l
the correct combination c∗l , i.e.,

Xl := X
c∗l
l ,∀l ∈ [1, . . . , L] .

c∗l is chosen by analyzing the ratios rzc1,c2 = (zc1l /z
c2
l )

and ruc1,c2 = (uc1l /u
c2
l ) for every pair c1 6= c2. Intu-

itively, if c1 = c∗l then rzc1,c2 is high and ruc1,c2 is low
for every c2.

3.2. Network structure

The input of the proposed CNN is the matrix X of the quan-
tized MDCT coefficients of the input file x, computed as de-
scribed in Section 3.1. Each element y(i) of the vector y re-
turned by the CNN can be interpreted as the probability of x
belonging to the i-th class.

Before feeding any input data to the CNN a preprocessing
is applied, i.e.,

1. Log-scaling: Xl,j ←− log10 (|Xl,j |+ 1),

2. Standardization: Xl,j ←− (Xl,j − µ̄j)
/
σ̄j ,

with µ̄j and σ̄j being the sample mean and sample standard
deviation of the j-th column of all matrices used by the net-
work during the training. Xl,j represents the j-th MDCT co-
efficient of the l-th frame of the input matrix. After the pre-
processing, the matrix X ∈ RL×1024 can finally enter the
CNN shown in Figure 1.

4x

Conv Pool
Conv Pool

Input Output!X !y

Fig. 1. Structure of the proposed CNN

The network consists of a first convolutional stage, and a
second full-connected stage: In the first stage, convolutional
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layers (h(1), h(3), h(5), h(7), h(9)) with Rectified Linear Units
(ReLUs) and max-pooling layers (h(2), h(4), h(6), h(8), h(10))
alternate between each others; in the second stage, a full-
connected layer h(11) of ReLUs connects the output of h(10)

to the input of the last softmax layer h(12). In order to avoid
over-fitting, dropout [14] was applied to the second stage of
the network during the training phase.

Details and parameters of the network, including the size
of shapes and strides used by each CNN layer, are reported
in Table 1 with the format [size y × size x]. As evident by
analyzing the dimensions of the shapes, the first stage is ad-
dressing the local interconnections in the frequency domain
(x-axis), while the evolution in time (y-axis) is handled by
the second stage.

Table 1. Parameters of the proposed network

Layer CNN Stage FC stage

Channels Shape Stride Neurons

h(1) 48 [1× 9] [1× 1]
h(2) [1× 4] [1× 2]
h(3) 64 [1× 9] [1× 1]
h(4) [1× 4] [1× 2]
h(5) 80 [1× 9] [1× 1]
h(6) [1× 4] [1× 2]
h(7) 96 [1× 9] [1× 1]
h(8) [1× 4] [1× 2]
h(9) 96 [1× 9] [1× 1]
h(10) [1× 4] [1× 2]
h(11) 3600
h(12) 9

The model identification is performed after fixing the di-
mension of the input matrix, i.e., X ∈ R4×1024. These di-
mensions reflect the choice of training a network able to rec-
ognize the encoding by using only 4 frames, i.e., 116.10 ms
of an audio recording sampled at 44.1 kHz.

4. EVALUATION AND RESULTS

The system was evaluated using AAC files encoded with
neroAacEnc v1.5.41. Differences with other encoders were
not included for conciseness: As long as quantized MDCTs
are retrieved, the CNN is able to generalize correctly. Nine
classes were considered, as shown in Table 2.

The initial content consisted of 50 PCM files, each of
them being subsequently encoded with all bitrates, then an-
notated and decoded. From each channel of all files, 23 non-
overlapping excerpts of 2 s were extracted from each chan-
nel, leading to a total amount of 2300 segments (23 excerpts

1http://www.nero.com/eng/company/about-nero/nero-aac-codec.php

Table 2. Labels of known classes C = {Ci}

PCM AAC (kbps)

32 48 64 96 128 192 256 320

Ci 1 2 3 4 5 6 7 8 9

Table 3. Content setup

Target Set Amount per class (#)

Files Segments Frames Examples

Training 20 920 77280 19320
Validation 10 460 38640 9660
Test 20 920 77280 19320

× 2 channels × 50 files). Each segment produced 84 half-
overlapping MDCT frames, i.e., 48300 examples per class
were produced for the system. The division of content into
training, validation and test sets is shown in Table 3 and led
to a training time of 5.3 min/epoch.

The three sets are completely disjoint: Every original file
and all of its encoded versions belong to the same set, in or-
der to avoid any evaluation bias. All results reported in Sec-
tion 4.1 and Section 4.2 refer to previously unused samples of
the test set.

4.1. Quantized MDCT coefficients extraction

A preliminary evaluation addressed the quality of the MDCT
coefficient extraction in Section 3.1, by comparing the de-
tected sequence with the ground truth information embedded
in the bitstream of the encoded AAC files. It is important to
note that neroAacEnc v1.5.4 is not using all possible combi-
nations, but only the four combinations listed in Table 4.

Table 4. Window combinations used by neroAacEnc

Combination Sequence Shape

c left right

1 long kbd kbd
2 long-start kbd sine
3 8-short sine sine
4 long-stop sine kbd

As shown in Table 5, the algorithm achieved an overall ac-
curacy higher than 95%, independently from the investigated
bitrate, and was thus considered suitable for our purposes.

4.2. AAC encoding detection and bitrate estimation

A second evaluation addressed the AAC encoding detection
and bitrate estimation at example level, i.e., by considering
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Table 5. Evaluation of the MDCT coefficients extraction

Bitrate (kbps) Window detection accuracy (%)

Long Start Short Stop Overall

32 97.3 93.4 93.0 91.9 96.8
48 97.0 95.2 95.4 93.2 96.8
64 97.3 96.1 96.4 94.3 97.1
96 97.7 95.4 97.5 95.0 97.5
128 98.5 97.9 98.9 96.5 98.4
192 97.2 97.8 99.6 96.7 97.5
256 97.3 96.6 98.9 96.9 97.4
320 98.6 94.7 98.6 96.9 98.2

only 116.10 ms (4 MDCT frames at 44.1 kHz) of content:
Let y be the output of the proposed CNN referring to the

input example. The detected class C̄ was determined as de-
scribed in the following equation:

C̄ = Ci, i = arg max
i

(
y(i)

)
. (1)

The resulting Confusion Matrix between the real class G and
the detected class C̄ on the test set is shown in Table 6. The
percentages relate to 19320 examples per class, and corre-
spond to a overall accuracy of 94.65%.

Table 6. Confusion Matrix (input of length 116.10 ms)

G C̄ as in equation (1)

1 2 3 4 5 6 7 8 9

1 94.7 0.1 0.1 0.9 2.4 0.7 0.4 0.5 0.2
2 0.0 96.9 3.0 0.1 0.0 0.0 0.0 0.0 0.0
3 0.0 5.9 91.0 3.1 0.0 0.0 0.0 0.0 0.0
4 0.0 0.1 1.2 97.7 1.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.6 98.8 0.5 0.1 0.0 0.0
6 0.1 0.0 0.0 0.1 3.4 95.7 0.6 0.1 0.0
7 0.0 0.0 0.0 0.0 0.6 0.8 94.5 3.9 0.2
8 0.2 0.1 0.0 0.1 0.3 0.1 8.3 90.6 0.3
9 0.7 0.1 0.0 0.2 0.3 0.1 1.2 5.4 92.0

A third evaluation addressed AAC encoding detection and
bitrate estimation at segment level:

Let X = {Xj}, Xj ∈ R4×1024 be the set of input MDCT
matrices and Y = {yj}, yj ∈ R9} the set of output vectors of
the CNN obtained by one input segment x – i.e., the amount
N := ‖X‖ = ‖Y‖ of elements in X and Y is equal to 21, and
corresponds to approximately 2 s of content.

The detected class C̄, based on fusion, was determined as
follows:

C̄ = Ci, i = arg max
i

 1

N
·

N∑
j=1

yj (i)

 . (2)

The complete Confusion Matrix is reported in Table 7, where
percentages refer to 920 segments per class. Every element
on the main diagonal, corresponding to the accuracy of the
relative class, increased due to the higher amount of available
information. The average accuracy of this segment-based ap-
proach consequently raised to 97.9%, confirming the overall
high reliability of the system.

Table 7. Confusion Matrix (input of length 2 s)

G C̄ as in equation (2)

1 2 3 4 5 6 7 8 9

1 96.9 0.0 0.0 0.2 2.6 0.3 0.0 0.0 0.0
2 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 1.5 98.1 0.4 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 2.2 97.8 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 6.1 93.9 0.0
9 0.1 0.0 0.0 0.0 0.1 0.0 0.8 4.5 94.5

The work by Luo et al. [8] reached an average accuracy
of 92.33% on a private dataset and of 94.74% on the GTZAN
dataset. However, these results were achieved by analyzing
5 s of mono content, encoded with lower AAC bitrates (32,
64, 96 and 128 kbps), and 22.05 kHz sampling rate, while our
approach aims at CD-quality stereo content sampled at 44.1
kHz, high bitrates, and short analysis segments. Consider-
ing the different goals, and the fact that [8] is based on fea-
tures that are highly sensitive to sampling frequency or anal-
ysis window length changes, a comparison would have been
misleading, and was therefore not performed.

5. CONCLUSIONS AND OUTLOOK

To the best of our knowledge, the method proposed in this
paper represents the first attempt to perform AAC encoding
detection and bitrate estimation by means of Deep Learning.
The system was tested for 8 different bitrates, spanning the
most common configurations used by AAC encoders, thereby
achieving an average accuracy of 94.65% by analyzing only
116.10 ms of content. The possibility of performing a fusion
led to an even higher accuracy of 97.9%.

The application of a CNN was based on an assessment of
previous works in this domain [6,8], and it reflects the choice
of addressing both the evolution in time, and the interconnec-
tions between adjacent frequency bins, which proved to be the
key carriers of information in the aforementioned approaches.

For the near future, it is planned to use a CNN for dou-
ble AAC encoding detection from PCM files. Moreover, we
would like to apply such a network to narrow-band content
like speech, to support forensics analysis for content authen-
tication purposes.
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