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ABSTRACT

Nowadays, everyone can download, edit and republish any picture
on the web, thus contributing to the diffusion of near-duplicate (ND)
images. In order to gain an interesting insight on the way NDs are
distributed online, recent works have focused on the reconstruction
of the image phylogeny tree (IPT), i.e., an acyclic graph describing
the genealogical relationship between ND image pairs. IPT recon-
struction methods typically leverage the possibility of reconstructing
one image from another one only if they are in parent-child rela-
tionship. However, as estimating the possible parent-child transfor-
mation is computationally expensive, usually a limited set of global
editing operations is considered (i.e., compression, geometric and
colour transformations applied to the whole image). However, in
a real-world scenario it is customary to edit images also using lo-
cal operations (e.g., logo insertion, object removal, splicing, etc.),
which hinder the possibility of correctly estimating the parent-child
relationship. In this paper, we propose an algorithm for IPT recon-
struction that deals with the presence of local editing operations.

Index Terms— Image phylogeny, near-duplicates

1. INTRODUCTION

Thanks to the increasing diffusion of multimedia sharing platforms,
as well as the high availability of image capturing devices and edit-
ing software, the amount of user-generated content available online
is growing over time. In order to regulate the spread of illegal or tam-
pered with images, the forensic community has deeply studied image
forensics during the years [1]. As an example, many algorithms have
been proposed to either verify image integrity [2], localize forgeries
[3, 4, 5], or detect the use of a specific processing operation [6, 7, 8].

However, many images uploaded on the web are re-published
duplicates of material already available online [9]. For example, dif-
ferent users may post the same pictures referred to the trend of the
moment on social networks. Alternatively, newscasts from different
broadcasters may publish the same pictures relative to an important
event or person. However, re-published images are seldom iden-
tical copies of the original ones. Conversely, they often undergo
editing operations to either artistically enhance their quality (e.g.,
colour correction, filtering, etc.), or to make them compliant with a
broadcaster standard (e.g., resize, crop, logo insertion, etc.). Images
obtained editing the same original content are usually referred to as
near-duplicates (NDs) [10, 11].

The possibility of exploiting a set of near-duplicates rather than
a object image for forensic analysis has paved the way to the de-
velopment of novel forensic algorithms that synergistically take into
account the information coming from all of them to perform even
deeper forensic analyses [12, 13, 14]. As a matter of fact, recent
works have shown that it is possible to study the phylogeny of near-
duplicate objects (i.e., their genealogical relationships) in order to

shed a very interesting insight on the way content has been modified
and re-distributed [15, 16, 17].

A common way to carry out phylogenetic investigations consists
in reconstructing the image phylogeny tree (IPT), which is a direc-
tional acyclic graph describing the parent-child relationship between
each ND image pair [18, 19]. By analysing the IPT, it is then pos-
sible to infer which image (the root of the tree) has been used to
generate the others (the remaining nodes of the tree). This allows
to trace back an image to its owner to either solve authenticity or
copyright issues.

In this paper, we focus on IPT reconstruction starting from a
pool of near-duplicate images. In order to reconstruct the IPT, state-
of-the-art algorithms approximately share a common pipeline [20]:
i) a dissimilarity value (proportional to how likely two images are in
parent-child relationship) is computed for each image pair; ii) the set
of dissimilarity measures is analysed to build the IPT. The proposed
approaches differ in the way dissimilarity is computed, or dissimilar-
ity values are aggregated. In this work, we focus on the first problem,
i.e., how to compute dissimilarity comparing image pairs.

More specifically, the rationale behind dissimilarity computa-
tion is that a child image can be reconstructed applying a set of edit-
ing operations to the parent one, whereas the parent can be obtained
starting from the children only in a very distorted way. Therefore,
it is possible to map an image into another one through a set of
transformations if and only if they are in parent-child relationship.
The key for a robust dissimilarity computation is the correct estima-
tion of the transformations that possibly map an image into another.
As, searching for these transformations is computationally expen-
sive, commonly used methods assume that only a limited number of
global transformations are considered (i.e., compression, geometric
and colour transformations applied to the whole image). However,
this assumption hinders the possibility of correctly compute dissim-
ilarity and estimating the parent-child relationship in presence of lo-
cal transformations commonly used in a real-world scenario (e.g.,
logo addition, inpainting, object insertion, etc.).

In this paper, we propose an algorithm for IPT reconstruction
that specifically takes into account the possible use of local editing
operations, still keeping computational complexity at bay. In partic-
ular, we propose a method to automatically localize areas that have
been locally manipulated by spotting the differences between near-
duplicate image pairs. This allows to exclude the locally manipu-
lated regions from dissimilarity computation, considering only the
area where global transformations have actually been applied. No-
tice that, even if this technique is presented for still images, it can be
readily used on video frames as well. Once dissimilarity has been
computed, IPT is reconstructed using a state-of-the-art dissimilarity
aggregation algorithm. The experimental campaign shows that we
are able to accurately estimate the locally forged region and that the
derived dissimilarity value improves the accuracy of IPT reconstruc-
tion.
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Fig. 1: Image phylogeny tree whose root is I1. Each node represents an im-
age and the directionality of the graph represents parent-child relationships.

2. BACKGROUND AND PROBLEM FORMULATION

Two images are considered near-duplicates if they have been gener-
ated from a common image applying any number of non-invertible
transformations within a set of admissible operations [10, 20]. More
formally, let us define a X × Y resolution image as I(x, y). Drop-
ping the (x, y) indexes where not strictly necessary in favour of a
more compact notation, N images In, n ∈ {1, . . . , N} are defined
as near-duplicates if In = T1→n(I1), where T1→n ∈ T is a combi-
nation of transformations within the set T of possible ones. Notice
that, as transformations are in most cases non-invertible, the parent-
image can be mapped into the children (i.e., T1→n ∈ T), but not the
vice versa (i.e., Tn→1 /∈ T). Given a pool of ND images, it is possi-
ble to describe the parental relationships between them by means of
an acyclic directed graph called image phylogeny tree (IPT). Fig. 1
shows an example of IPT, where each node represents an image and
directional edges link images in parent-child relationship.

State-of-the-art algorithms for IPT reconstruction share a com-
mon pipeline: i) images are pair-wise compared to compute the dis-
similarity matrix D that measures the likelihood of images to be in
parent-child relationship; ii) dissimilarity matrix D is analysed to
reconstruct the IPT.

A thoroughly validated way to compare images and build dis-
similarity matrix is reported in [10, 20]. The rationale is that an
image can be reconstructed applying a set of transformations to an-
other image if and only if the latter is parent of the former. Therefore,
given two images In and Im, first the transformation that best maps
Im into In is computed as

T̂m→n = arg min
T

L(In, T (Im)), (1)

where L is any distance metric, and T̂m→n ∈ T. Dissimilarity is then
computed as

Dm,n = L(In, Im→n), (2)

where Im→n = T̂m→n(Im) is the best estimate of In obtained from
Im. If Im is parent of In, a transformation that maps Im into In
exists (ideally T̂m→n = Tm→n), thus leading to a small dissimilarity
value Dm,n. Conversely, as a transformation that maps In into Im
does not exist (i.e., a parent cannot be reconstructed by the children),
dissimilarity Dn,m will be higher.

Dissimilarity matrix D describes a complete directed graph,
where each node is an image, and edges are dissimilarity values.
Once it has been computed, it is possible to reconstruct the IPT as
the minimum spanning tree of this graph using different state-of-
the-art algorithms such as Oriented Kruskal (OK) [11] or Optimum
Branchings (OB) [21].

(a) I3 (b) I1→3 (c) I3 − I1→3

Fig. 2: With reference to the IPT of Fig. 1, I3 (a) cannot be reconstructed
from I1 (b) due to the presence of the logo that appears in their difference
(c).

The most computationally expensive task is T̂m→n estimation
between every image pair (i.e., N(N − 1) times), achieved by min-
imising (1). For this reason, it is common to adopt an heuristic al-
gorithm that works under the assumption that T is limited to a set of
global operations, i.e., resizing, rotation, cropping, colour transfor-
mations and JPEG compression [10, 20]. As a matter of fact, T̂m→n

is estimated as the combination of three transformations: i) T̂ geo
m→n

geometrically aligns Im to In using keypoints correspondences (e.g.,
using SURF features [22]); ii) T̂ col

m→n matches the colour histogram
of Im to In, and; iii) T̂ JPEG

m→n compresses Im with the JPEG quality
factor used for In.

However, as in a real-world scenario it is common to use local
image editing operations (e.g., object insertion), an estimate of T̂m→n

based on global operations only does not approximate well Tm→n on
the locally forged region. An example is given in Fig. 2. The pres-
ence of a logo in I3 prevents it to be well reconstructed from I1, thus
leading to a high dissimilarity value that does not well represent the
parent-child relationship between the two images. In the following
we formally analyse this issue and show how to solve it.

3. THE EFFECT OF LOCAL MANIPULATION

In this section we analyse the effect of local manipulation on dissim-
ilarity. To this purpose, let us consider two images Ip (parent) and
Ic (children) in parent-child relationship and the mean squared er-
ror as distance metric L for dissimilarity computation as in [10, 20].
The approach can be easily extended to other dissimilarity measures.
Defining the image residual as Rp,c = Ip→c − Ic, dissimilarity be-
tween Ip and Ic can be written as

Dp,c =
1

XY

∑
(x,y)

|Rp,c(x, y)|2. (3)

With these definitions at hand, let us analyse dissimilarity behaviour
in presence of either global or local transformations.

Global transformations. Let us now consider that Ic =
Tp→c(Ip) has been generated from Ip using only global transfor-
mations (as I2 was generated from I1 in Fig. 1). The transformation
T̂p→c = (T̂ JPEG

p→c ◦T̂ col
p→c◦T̂ geo

p→c), where ◦ represents function composi-
tion, can be estimated according to [10, 20] as outlined in Section 2
(and T̂c→p as well). Image residuals become

Rp,c = Ip→c − Ic = T̂p→c(Ip)− Tp→c(Ip) ' 0, (4)

Rc,p = Ic→p − Ip = T̂c→p(Ic)− Ip, (5)

where the approximation to zero in (4) holds as T̂p→c ' Tp→c. As
expected Dp,c will be lower than Dc,p.
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Local transformations. Let us now consider the children I loc
c ,

generated as Ic with the addition of local manipulation on a given
area (as I3 was generated from I1 in Fig. 1). More formally, let us
describe the locally manipulated pixels of I loc

c by means of a mask
Mc(x, y) the same size of I loc

c defined as

Mc(x, y) =

{
1, if I loc

c (x, y) = Ic(x, y),

0, if I loc
c (x, y) 6= Ic(x, y),

(6)

where the inequality is due to the presence of a local operation. If the
locally manipulated area is sufficiently small, we can still estimate
the global transformation T̂p→c by the sole knowledge of I loc

c and Ip.
However, the residual in the parent-to-child case becomes{

Rloc
p,c(x, y) = Rp,c(x, y) ' 0, if Mc(x, y) = 1,

Rloc
p,c(x, y) 6= Rp,c(x, y), if Mc(x, y) = 0,

(7)

This means that local manipulation yields high local dissimilarity,
thus Dloc

p,c > Dp,c. This is in contrast to our goal of keeping Dloc
p,c as

low as possible to well describe the parent-child relationship.
A solution to the aforementioned problem is to modify dissimi-

larity in (3) as

Dloc
p,c =

1

|Mc|
∑

(x,y)∈Mc

|Rloc
p,c(x, y)|2, (8)

where Mc = {(x, y)|Mc(x, y) = 1} defines the non-locally ma-
nipulated region and |Mc| is the cardinality ofMc. In the following
we show how this is possible.

4. PROPOSED ALGORITHM

In this section we propose our algorithm to localise the locally ma-
nipulated region, and show how to exploit it for IPT reconstruction.

Region selection. In order to estimate Mc , we exploit the possi-
bility of estimating Ic from the sole knowledge of Ip and I loc

c . More
specifically, we estimate the global transformation T̂p→c from Ip and
I loc
c , then approximate Ic as

Îc = T̂p→c(Ip) ' Ic. (9)

Notice that, since we only applied global transformations, Îc does
not present any traces of local manipulation. It is then possible to
compute an estimation of Ic→p as

Îc→p = T̂c→p(Îc), (10)

and the derived residual become

R̂c,p = Îc→p − Ip = T̂c→p(Îc)− Ip =

= T̂c→p(T̂p→c(Ip))− Ip ' T̂c→p(Ic)− Ip.
(11)

It is important to notice that R̂c,p ' Rc,p does not depend on I loc
c ,

thus it does not present traces left by local manipulation on any
pixel. Therefore we can compare R̂c,p and Rloc

c,p to infer which pix-
els of Rloc

c,p are affected by the presence of local manipulations (i.e.,
{(x, y)|Mp(x, y) = 0}).

This is done following a probabilistic approach. More specif-
ically, for pixel locations {(x, y)|Mp(x, y) = 1}, we expect
|Rloc

c,p(x, y)| to assume low values as |R̂c,p(x, y)|. Conversely,
for pixel locations {(x, y)|Mp(x, y) = 0}, we expect |Rloc

c,p(x, y)|
to assume high values due to the presence of local manipulations.

e
0 50 100 150 200 250

p
(e
)
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-5

10
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10
-1 pR(e) ≃ pR̂(e)

pRloc(e)
pRloc(e), (x, y) ∈ M

pFA

Fig. 3: pR(e) (blue line) assumes mostly low values, whereas pRloc (e) (or-
ange line) assumes also higher values. Values of pRloc (e) in the local tam-
pered region (yellow dashed line) dominate the tail of pRloc (e), proving that
tail values well describe the local edited area. Choosing a threshold Γ (black
dashed line) it is possible to fix a pFA and separate the most part of locally
edited pixels.

Therefore, the probability mass function (pmf) pR̂(e) of |R̂c,p| ap-
proximately follows the pmf pR(e) of |Rc,p|, which is concentrated
around low values. On the other hand the pmf pRloc (e) of |Rloc

c,p| will
present higher values corresponding to the manipulated pixels. An
example is shown in Fig. 3. The goal is to detect from which value
of the pRloc (e) tail belong pixels in the locally edited area. This can
be done by setting a threshold Γ that fixes a given probability of
false alarm pFA =

∑∞
e=Γ pR(e) '

∑∞
e=Γ pR̂(e). We then estimate

the mask as

M̂p(x, y) =

{
0, if Rloc

c,p(x, y) ≥ Γ,

1, otherwise.
(12)

The mask M̂c in the Ic domain is then estimated from M̂p by simply
warping its domain according to the transformation T̂ geo

p→c.
In order to reduce noise in the estimated mask (i.e., small areas

of isolated pixels not due to local tampering), some morphological
operations can be applied to M̂c. In this work we decided to apply
closing (with a squared structuring element of 5×5 pixels) followed
by erosion (with a squared structuring element of 11× 11 pixels).

IPT reconstruction. With the ability of estimating the mask
M̂c, we can reconstruct the IPT modifying the common pipeline in
[11]. More specifically, given an image pair Ip and I loc

c , we compute:
i) the global transformation T̂p→c = (T̂ JPEG

p→c ◦ T̂ loc
p→c ◦ T̂ geo

p→c) using the
approach in [11]; ii) the mask M̂p on Ip domain according to (12);
iii) the mask M̂c on I loc

c domain as M̂c = T̂ geo
p→c(M̂p); iv) the residual

Rloc
p,c = T̂p→c(Ip)−I loc

c ; v) dissimilarity value Dloc
p,c according to (8).

Once dissimilarity matrix D has been computed, we apply the OB
algorithm [21] to reconstruct the IPT.

5. EXPERIMENTAL RESULTS

In order to validate the proposed method, we tested it on a pool of
IPTs with different sizes and topologies. Each tree was generated
randomly selecting as root a 512 × 384 resolution image from the
UCID database [23]. For each tree, the root was JPEG compressed.
All the other images were generated randomly selecting a node of
the tree as parent and applying: i) a combination of up to five ran-
domly selected global transformations among contrast enhancement,
brightness adjustment, resizing and cropping); ii) optionally (i.e.,
with probability ploc) a local manipulation; and iii) JPEG compres-
sion with randomly selected quality between 50% and 100%. As
local manipulation we considered object insertion, which is a very
commonly used technique of photo manipulation. More specifically
we inserted a logo randomly chosen from a selection of nine differ-
ent ones in a random position within the image. Each logo approxi-
mately covers the 8% of the pixels of an image.
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(a) (b) (c)

Fig. 4: With reference to I1 and I3 of Fig. 1, the ground truth Mp (a), the
estimated Mp with pFA = 0.02 (b) and Mp after morphological operations.

Table 1: Mask estimation results evaluated on Dp=0.7
10 . The target pFA is

reached using morphological operations (reported in bold).

pFA Morph. TPR TNR FPR FNR
0.02 � 0.957 0.961 0.039 0.043

X� 0.978 0.978 0.022 0.022
0.04 � 0.966 0.932 0.068 0.034

X� 0.984 0.962 0.038 0.016
0.06 � 0.970 0.908 0.092 0.030

X� 0.987 0.947 0.053 0.013

To analyse many scenarios, we generated different datasets of
IPTs changing the number of nodes N per tree (i.e., 10 or 20) and
the probability ploc of applying local manipulation from one node
to the other (i.e., 0, 0.3, 0.5 and 0.7). We denote each dataset as
Dp=ploc

N . For each combination of parameters, we generated 100 dif-
ferent trees, for a total number of 12000 images. Notice that ploc = 0
means that no local manipulations are applied, which is the working
condition of the state-of-the-art method [21].

Mask estimation. To evaluate the accuracy of the mask esti-
mation algorithm, we considered the 1000 images of datasetDp=0.7

10 .
For each parent-child image pair we estimated the local manipula-
tion mask M̂p and compared it with the ground truth Mp. We tested
different Γ obtained for different probabilities of false alarm pFA im-
posed. We also considered masks obtained either with or without the
use of morphological operations. An example of obtained masks is
reported in Fig. 4.

The goodness of the obtained masks is evaluated using as met-
rics: i) true positive rate (TPR), i.e., the percentage of pixels cor-
rectly estimated as locally edited, and; ii) true negative rate (TNR),
i.e., the percentage of pixels correctly estimated as not locally edited.
For convenience, false negative rate (FNR) and false positive rate
(FPR) are also reported.

Table 1 reports the values of the evaluation metrics averaged on
all the considered image pairs for all the performed tests. Both TPR
and TNR always exceed 90%. Moreover, if we compare the refer-
ence pFA with the achieved FPR, we notice that the trend is always
verified (i.e., increasing pFA also FPR grows). Additionally, using
morphological operations to remove some spurious pixels from the
estimated masks we are able to predict the threshold Γ that actually
ensures a given pFA.

IPT reconstruction. We evaluated the IPT reconstruction al-
gorithm based on mask estimation comparing our results to those
obtained with the baseline state-of-the-art method [21]. Our method
was used considering estimated masks M̂ (fixing pFA = 0.04) for
the removal of the local edited area. For each tree of each dataset we
then reconstructed the IPT, and evaluated the performance of each
algorithm according to the metrics commonly used in image phy-
logeny works [16, 20]: i) root counts whether the root of the tree is
correctly identified (i.e., 1) or not (i.e., 0); ii) edges is the percentage
of directed edges correctly identified; iii) leaves measures the per-
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Fig. 5: Results of IPT reconstruction on trees of 20 nodes using the baseline
method [21] (a)(b) and our algorithm (c)(d).
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Fig. 6: Averaged metrics values on all the datasets for increasing ploc. Base-
line method [21] is compares to our algorithm using either ground truth (M )
or estimated (M̂ ) masks.

centage of leaves correctly detected; iv) ancestry is the percentage
of ancestral relationships correctly guessed.

Fig. 5 shows the achieved IPT reconstruction results on 20
nodes trees (i.e., Dp=0

20 , Dp=0.3
20 , Dp=0.5

20 and Dp=0.7
20 ) with the base-

line method and with our algorithm based on the estimated masks.
Results for 10 nodes trees are not reported as the behaviour is ex-
actly the same. It is interesting to notice that our method practically
achieves the same results as the baseline when no local manipu-
lations are applied (i.e., ploc = 0). However, the baseline method
suffers from the presence of local manipulations, specifically con-
cerning the metrics root and ancestry.

To highlight the accuracy gain of the proposed algorithm, we
aggregated the four metrics for trees with the same ploc, considering
both 10 and 20 nodes trees. In this case, we also tested our method
applying the ground truth masks M . Fig. 6 shows the dependency
between the averaged metrics and ploc. When ploc = 0 (i.e., no local
manipulation), our method reaches the state-of-the-art. However,
as ploc increases, the baseline method looses in accuracy, while the
proposed one does not suffer any accuracy decrease. Notice that
using ground truth or estimated masks does not change the achieved
results, thus masks are correctly estimated.

6. CONCLUSIONS

In this paper we proposed a method for IPT reconstruction that im-
proves over state-of-the-art in presence of locally manipulated ND
images. The algorithm localises the locally manipulated areas and
excludes them from dissimilarity computation. Dissimilarity values
are then aggregated using the OB algorithm.

In addition to IPT reconstruction, the proposed region selection
method can be fruitfully applied to other scenarios where similar
images are under analysis. As an example, it can be applied for tam-
pering detection in ND images [24], or forgery detection exploiting
novel camera thumbnails-based techniques [25].
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