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ABSTRACT
Recent researches on image forensics have led to the design of algo-
rithms to study the phylogenetic relationship between near-duplicate
(ND) images. The proposed solutions aim at reconstructing the im-
age phylogeny tree (IPT), and they have immediate applications in
security, law and copyright enforcement, and news tracking services.
Anyway, the effectiveness of such strategies strictly depends on the
accuracy in characterizing image similarities. In this paper, we show
that it is possible to take into account additional information to better
reconstruct the IPT. More specifically, we propose a set of features
that blindly model the processing age of an image, i.e., how much an
image has been edited in its lifetime. By exploiting these features,
it is possible to improve the performance of IPT reconstruction by
increasing the accuracy and reducing the computational complexity.

Index Terms— image phylogeny, processing age, multimedia
forensics, near-duplicate images

1. INTRODUCTION

Thanks to the availability of accessible and usable authoring and
sharing tools, the publication and distribution of digital images on-
line is a relatively-easy task. Unfortunately, this has brought several
new issues and problems from legal and social point-of-views. Im-
ages and videos can “mutate” as they spread out and some of the
modified versions are not always authorized [1]. After posting an
image online, other users can copy, resize and/or re-encode it and
then repost different versions, thus generating similar but not identi-
cal copies, often referred to as near-duplicates (NDs).

In the last decade, several research groups have successfully fo-
cused on the design and deployment of algorithms for the detection
and recognition of the near-duplicates of a document. A far more
challenging task that has been vastly overlooked until recently, arises
when we want to identify which document is the original within a set
of NDs, and the structure of their generation [2, 3]. These relations
can be well described by means of a structure called image phy-
logeny tree (IPT) (see an example in Fig. 1).The term was mutuated
from biology given the analogy with the analysis of the mutation
process that occur to living organisms in biology.

In order to reconstruct the IPT given a set of ND images, state-
of-the-art algorithms compute similarities/dissimilarities metrics be-
tween every pair of images [4, 5]. Then, images are associated to
the nodes of a weighted directed graph (where weights correspond
to the dissimilarity values), and a minimum spanning tree algorithm
is run.

Unfortunately, these solutions are less robust in identifying the
correct relations whenever dissimilarity values are noisy [6] or some

Fig. 1. Image phylogeny tree between ND images.

nodes are missing in the graphs (since some images, which are
present in the original IPT, are not available to the analyst). In this
paper we show that it is possible to overcome this problem by intro-
ducing a set of features that are strictly related to the processing age
(PA) of the image, i.e., to the number of processing steps that have
been applied to it. PA metrics are blindly computed on each single
image and permits ordering near-duplicate images from the earliest
processing stages to the latest ones. The reconstruction of the IPT
benefits from these features since it is possible to avoid computing
dissimilarities between pair of images which presents different PA
values. This fact permits reducing significantly the computational
complexity of the approach since the calculation of dissimilarities
between image is the most demanding task in IPT reconstruction
algorithms. Moreover, whenever some nodes are still missing, it is
possible to place every image at the correct depth of the original IPT.

In the following, in Section 2 the IPT reconstruction problem
is formulated. Section 3 describes the proposed features, and Sec-
tion 4 describes how to use them in estimating the IPT. Experimental
results are reported in Section 5. Finally, Section 6 concludes the pa-
per.

2. RECONSTRUCTION OF IMAGE PHYLOGENY TREES

State-of-the-art algorithms for IPT reconstruction approximately fol-
low a common pipeline [4, 6]. In this section we briefly outline this
pipeline that serves as a background for the rest of the paper. For
more details on each step, please refer to [4].

Given a set of K near-duplicate images Ik, k = 1, . . . ,K, first
the dissimilarity matrix D = [dh,k] is computed. Each element dh,k
corresponds to the dissimilarity between images Ih and Ik. This
value is related to the likelihood of Ik to be parent of Ih and it is
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computed as
dh,k = L(Ih, Ik→h), (1)

where L is any dissimilarity metric (e.g., mean squared error) and
Ik→h is a transformed version of Ik obtained via a set of process-
ing steps that maximize the similarity with Ih. In order to estimate
Ik→h, we adopted the method reported in [6].

Once dissimilarity matrix D has been computed, it can be inter-
preted as a complete directed graph, where each node is an image,
and each directional branch is the dissimilarity dh,k. Computing a
minimum spanning tree (MST) on the graph permits estimating the
IPT that generated the set of images. In our approach, we adopted a
solution based on optimum branching algorithm (OB) [7].

Notice that dissimilarity computation is typically the most de-
manding task in IPT reconstruction algorithms due to the estimation
of Ik→h for each image pair (i.e., K(K − 1) cases). For this rea-
son, in the following, we propose an approach that helps reducing
the number of dissimilarity computations.

3. A PROCESSING AGE METRIC FOR IMAGES

Several works in multimedia forensics have shown that for every im-
age it is possible to compute a set of statistics following a pre-defined
model. Every modification operated on the image alters these statis-
tics so that they deviate from the original model [8]: these devia-
tions can be considered as traces (footprints) of the alterations and
depends on both the type and the number of operations [9, 10]. As a
matter of fact, they can be used to estimate the processing age (PA)
of an image.

As an example, previous works have shown that the statistics
of DCT coefficients c of natural images can be well modelled by
parametric probability density function (pdf) such as Laplacian [11],
generalized Gaussian [12], laplacian+impulsive [13], and Cauchy
[14]. Alternatively, if DCT coefficients are quantized (e.g., due to
JPEG compression), further studies have shown that the pdf of their
first digits (FDs) with base M , i.e.,

m = FDM (c) =
⌊ |c|
MblogM |c|c

⌋
. (2)

can be well modelled by some parametric functions. If M = 10 is
used, FD distribution should follow a logarithmic curve defined by
Benford’s law [10, 15].

In this work, we define the probability mass function (pmf) of
the absolute values of quantized DCT coefficients c located at fre-
quencies (i, j) as pi,j(c). Similarly, we define the pmf of the FDsm
computed on the quantized coefficients c located at frequencies (i, j)
as Pi,j(m). The fitting model that we use for DCT coefficients and
FDs is defined as

pfi,j(c) =Γe−π(c),

P fi,j(m) =Γe−π(m),
(3)

where the first or second equation is adopted depending on the use of
DCT coefficients or FDs, π(·) is a polynomial of second degree and
Γ is a normalizing constant. In this way, it is possible to include both
a Laplacian and a Gaussian model for the absolute value of quantized
coefficients avoiding the fitting problems related to the generalized
Gaussian.

Given an image I , it is possible to compute the coefficients c (or
the FDs m) at different frequencies (i, j), and find the best fitting
model pfi,j(c) (or P fi,j(m)) according to (3). Fig. 2 shows that the
pmf of both DCT coefficients and FDs deviates from the model (3)

when we apply a series of operations to the first image of the UCID
dataset [16]. More specifically, the plots in Fig. 2 report the statistics
pi,j(c) and Pi,j(m) with the corresponding fitted models when one
(a,d), two (b,e) and three (c,f) operations randomly selected among
rotation, rescaling and cropping are applied, followed by a JPEG
compression. Parameter values will be reported in Section 5. Figs. 2
d, e and f report the plots of Pi,j(m) and the corresponding fitted
model, consideringM = 100 (in order to have a more reliable statis-
tic). It is possible to notice that the fitting error ‖pi,j(c) − pfi,j(c)‖
(or ‖Pi,j(m)−P fi,j(m)‖) increases as the number of transformation
increases.

From these premises, it is possible to employ the fitting error for
the coefficients at some locations as a processing age measurements
that helps building the IPT. The more the statistics fit the model, the
less an image has been processed and altered. Therefore, PA met-
rics should focus on the divergence between pi,j(c) and pfi,j(c) (or,
equivalently, between Pi,j(m) and P fi,j(m)). To this purpose, we
tested different divergence measuresDX(P ||P f ) to find out the one
that performs better (the indexX will be described in the following).

Since divergence is not a symmetric function, we usually evalu-
ate the sum of divergencies

DX(P, P f ) = DX(P ||P f ) +DX(P f ||P ). (4)

In our analysis, we considered only coefficients at frequencies
(0, 1) and (1, 0) since they are more stable and their statistics are
mildly affected by transformations like small rotations and rescal-
ings. Moreover, their statistics can be well modelled by a simple
Laplacian or Gaussian random variable for non-edited images and
progressively deviate from the proposed model as the number of al-
terations increases.

From these premises, the processing age metrics associated to
divergence DX can be defined as

PA-Xc =
DX(p0,1(c), pf0,1(c)) +DX(p1,0(c), pf1,0(c))

2
(5)

whenever referred to coefficients, and

PA-Xfd =
DX(P0,1(m), P f0,1(m)) +DX(P1,0(m), P f1,0(m))

2
(6)

whenever referred to FD statistics.

3.1. Processing age from Kullback-Leibler divergence

In a first set of tests, we considered the well-known Kullback-Leibler
divergence DKL which can be expressed via the equation

DKL(P ||P f ) =
∑
m

P (m) log2

P (m)

P f (m)
. (7)

Including equation (7) into equations (4), (5), and (6), we obtains
the processing age metrics PA-KLDc and PA-KLDfd (where refer-
ence X =KLD is associated to the Kullback-Leibler divergence)

3.2. Processing age from Renyi divergence
Experimental results showed that the values of PA metrics based
on the Kullback-Leibler divergence become very dense as the num-
ber of processing steps increases. Moreover, Kullback-Leibler di-
vergence values change significantly for low-entropy statistics, but
for medium and high entropy pmf the divergence values vary quite
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(a) (b) (c)
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Fig. 2. Probability mass function for coefficients (p1,0(c)) and FDs (P1,0(c)) and the corresponding fitted model (pf1,0(c) and P f1,0(c),
respectively) for image 0 of UCID dataset after different number of transformations (indexes are omitted). Upper graphs: pf1,0(c); lower
graphs: P1,0(c). (a,d): one transformation; (b,e): two transformations; (c,f): three transformations. The fitting error values are 0.0010 (a),
0.0011 (b), 0.0017 (c), 0.025 (d), 0.026 (e), and 0.027 (f).

slowly. In order to obtain a better separation of PA values, we con-
sidered the Renyi divergence Dα

R [17] with parameter α 6= 1, which
can be written as

Dα
R(P ||P f ) =

1

α− 1
log2

(∑
m

P (m)αP f (m)1−α
)

(8)

Similarly, the associated processing age metrics will be called PA-
RENc and PA-RENfd, where the parameter α is set to 0.5. Different
values of α were tested, but only α < 1 permitted obtaining a good
performance since metric values are distributed on a wider range
whenever the statistics have medium or high entropy (i.e., images
are non-trivial or excessively compressed).

3.3. Processing age from Tsallis divergence
In the end, we tested the possibility of achieving a better characteri-
zation of the processing age using Tsallis entropy [18]. Performing
the same generalization from entropy to divergence used for Shan-
non and Renyi entropy, it is possible to write the Tsallis divergence
DT as

Dα
T (P ||P f ) =

1

1− α

(
1−

∑
m

(P (m)αP f (m)1−α)

)
. (9)

Similarly, the associated processing age metrics, generated via equa-
tions (5) and (6 ), are PA-TSAc and PA-TSAfd, where the parameter
α is set to 0.5. after a set of tests.

In the following, we will explain how PA metrics can be in-
cluded in the phylogenetic analysis

4. RECONSTRUCTING IMAGE PROCESSING TREES VIA
PROCESSING AGE METRICS

Given a set of K ND images Ik, k = 1, . . . ,K, it is possible to
reconstruct the IPT via the following strategy.

At first, the algorithm computes the processing age PA(Ik) for
every image (using one of the proposed techniques). Notice that PA
computations increase linearly (i.e., K) with the number of images
rather than quadratically as the dissimilarities (i.e., K(K − 1)).

Then, the age of images are compared in order to exclude un-
likely parent-child relations. As an example, if PA(Ih) < PA(Ik),
then it is less probable that the h-th image is the parent of the k-th
image. As a matter of fact, there is no need to compute the dissimi-
larity dk,h.

Unfortunately, processing age metrics are affected by errors, and
therefore, if the values PA(Ih) and PA(Ik) are too close they could
not be reliable enough. In order to solve this, we introduced a thresh-
old δ which avoid removing the parent-child dependencies when the
PA values are too close, i.e.,

procedure REMOVEDEPENDENCY(k, h)
if |PA(Ih)− PA(Ik)| ≥ δ then

if PA(Ih) < PA(Ik) then
remove dependency Ih → Ik

else
remove dependency Ik → Ih

else
do not remove anything.

According to this procedure it is possible to compute only some val-
ues of the D matrix (i.e., those for which the dependency has not
been removed). Once D has been populated, the standard Oriented
Kruskal [4] or optimum branching [19] algorithms can be used to
reconstruct the IPT.

Note that the parameter δ can control both the accuracy of re-
construction and the computational complexity. As δ increases, the
percentage of parent-child dependencies (and, consequently, of com-
puted dissimilarities) decreases leading to reduced computational
complexity.

In the following section, we will present how this parameter also
affect the reconstruction performance.

5. EXPERIMENTAL RESULTS

In order to validate our method, we built a dataset starting from im-
ages of the UCID database [16] as suggested in [4]. More specif-
ically, we built 50 trees of 10 and 30 nodes for a total number of
50 × (10 + 30) = 2000 images. The root of each tree is a dif-
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Fig. 3. Performance for different PA metrics in IPT reconstruction. Vertical bars in the first row plots the accuracy for each metric under
different test conditions. a) 10 nodes ; b) 30 nodes; c) 30 nodes with removal probability 20%; d) legend. The second row reports the accuracy
of parameters RT, LT, ET, AT vs. computational saving for different PA metrics. e) RT, f) LT, g) ET, h) AT.

ferent image compressed in JPEG format. The other nodes of each
tree are obtained applying a set of possible transformations (up to
4) randomly-chosen among resampling (factor ∈ [.7, 1.2]), cropping
([1, 5] %), rotating (angle ∈ [−5, 5] deg), and JPEG compression
(QF ∈ [85, 87, 90, 92, 95]). The parameters for each operations are
chosen randomly as well. All operations are terminated by a JPEG
compression. In our tests, we reconstructed the trees using both the
reference algorithm [7] and our proposed method (i.e., testing sep-
arately each one of the processing age metrics before D estimation
and using OB for the IPT reconstruction).

The reconstruction performance was evaluated using the same
metrics reported in [4, 7] , which aim at evaluating the precision in
identifying the roots, the leaves, the ancestors and the edges of the
original IPT. Naming T̂ the estimated IPT and T the correct one, the
metric RT reports the percentage of correctly identified roots, i.e.,
the percentage of T̂ where root(T ) ∈ root(T̂ ). The metric ET re-
ports the percentage of correctly-identified edges, i.e. |edges(T̂ ) ∩
edges(T )|/|edges(T )|, while LT denotes the percentage of correct
leaves (|leaves(T̂ ) ∩ leaves(T )|/|leaves(T )|). The metric AT eval-
uates the effectiveness of the algorithm estimating the pairs node-
ancestor in the chains. More precisely, given that A(T ) denotes the
set of pairs of nodes (Ih, Ik) such that Ih is a direct ancestor of Ik,
AT evaluates |A(T̂ ) ∩A(T )|/|A(T )|.

Figures 3 a and b report the performance for different PA met-
rics on trees with different number of nodes/images. In general, it is
possible to notice that accuracy obtained using PA metrics improves
with respect to standard reference algorithm. More precisely, the ac-
curacy increment obtained by PA-KLDfd, PA-RENfd, PA-TSAfd
is the highest for all the metrics. It is possible to notice that this in-
crement is more evident as the number of nodes in the tree increases.
In fact, they permit obtaining 100% accuracy for the RT metric while
the reference algorithm has a lower performance for large trees (see
Fig. 3 c). It is also worth considering that computing the divergences
on the coefficient statistics lead to a poorer performance since the
accuracy decreases for all the metrics. This fact is more evident
when using Tsallis divergence (PA-TSAfd vs. PA-TSAc ), while
Renyi and Kullback-Leibler divergence approximately present the
same accuracies when applied to coefficient and FD statistics (made
exception for the RT metric).

Additional tests were done on incomplete sets, i.e., removing
images from the set assuming that the pictures that generated the
tree are not fully available. In this case, we performed a random
removal of images/nodes with varying removal probability. Fig. 3
c report the accuracies of PA-based IPT reconstruction for a tree of
30 nodes with removal probability equal to 20 %. It is possible to
notice that the benefits of using PA metrics are more evident in this
case since the accuracy of the reference method decreases. The bars
show an increment of 10% in the accuracy of metric RT.

On average, PA metrics permit saving about 30% of dissimi-
larity computations between images (with respect to OB). Anyway,
further investigations were performed in order to characterize the de-
pendency between accuracy and computational effort. To this pur-
pose, we varied the parameter δ (see Section 4) for all the PA metrics
computing the obtained RT, LT, ET, AT accuracy and the percentage
of skipped dissimilarity computations. The second row in Figure 3
reports the accuracy vs. the computational saving.

Although many PA metrics present the same accuracy, complex-
ity analysis permits noting that for IPTs of 10 images (Fig. 3 e,
f, g and h) the metric PA-TSAfd provides the best performance
since the accuracy decrement as the computational saving increases
is minimum for all the considered metrics. It is also worth of consid-
eration using different metrics according to the type of information
about the underlying IPT we need to extract. If the analyst needs
to identify the root of the tree, he/she simply looks for the image
whose coefficient statistics is highly conforming with respect to the
fitted model. In case other metrics are targeted (LT, ET and AT),
characterizing different fitness levels could be extremely useful to
understand the interrelations between images.

6. CONCLUSIONS

In this paper we presented the possibility of including a processing
age metric in the reconstruction of IPTs. The age of a processed
digital image can be approximated by measuring the fitting of DCT
coefficients and FDs statistics with respect to a parametric model.
The proposed feature permits both reducing the computational com-
plexity and improve the final accuracy. Future work will be devoted
to test the proposed approach on a large scale scenario and to other
media format such as audio tracks and video sequences.
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