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ABSTRACT

To verify the authenticity of easily manipulated multimedia con-
tent, forensic researchers have proposed many techniques to estimate
the processing history of given multimedia content. When multi-
ple operations may be applied on multimedia content, a complete
processing history would involve the information of not only what
manipulation operations have been applied, but also in what order
they were applied. However, there are few works considering the
problem of detecting the order of operations. Moreover, due to the
interplay among operations, the order of operations may not always
be detectable. This leads to a fundamental question of when we can
or cannot detect the order of operations. In this paper, we propose an
information theoretical framework to answer this question. Specifi-
cally, we formulate the problem of detecting the order of operations
into a multiple hypotheses testing problem. Then, we propose an
information theoretical framework to characterize the relationship
between the true hypothesis and the detected hypothesis. Under this
framework, we propose a mutual information based criterion to de-
termine the detectability of the order of operations. Furthermore,
conditional fingerprints are defined in this framework to understand
why the order of operations is not always detectable. The detection
of the order of resizing and blurring is examined in this paper, where
the order detection scheme has been proposed and the effectiveness
of our framework has been demonstrated by simulations.

Index Terms— Digital Forensics, Order of Operations, Infor-
mation Theory, Resizing and Blurring

1. INTRODUCTION

With the help of various multimedia editing tools, manipulating mul-
timedia content has become very easy. In order to verify the authen-
ticity of multimedia content, forensic researchers have developed
many techniques to estimate the processing history of the given mul-
timedia content. Specifically, we are able to identify the use of dif-
ferent manipulation operations such as compression [1–3], resizing
[4, 5], contrast enhancement [6], blurring [7–9] and so on [10–12].

Most of these forensic techniques, however, made assumptions
that only one operation may be applied on the multimedia content.
For scenarios where multiple operations are considered, there have
been some techniques proposed to detect the existence of specific op-
erations in an operation chain. For example, in [13] and [14], foren-
sic techniques have been proposed to detect double compression in
the operation chain of two compressions with resizing or contrast
enhancement in between, respectively. In [15], an improved contrast
enhancement detector was proposed to detect this operation when it
was applied on previously JPEG compressed images. Furthermore,
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authors in [16] were able to recover the compression history when
full-frame linear filtering is applied after JPEG.

While it is important to detect the existence of each operation in
an operation chain, detecting the order of how these operations have
been applied is even more crucial to obtain the complete process-
ing history of multimedia content. Furthermore, the knowledge of
the order of operations can help us investigate when the multimedia
content was manipulated and who manipulated it.

Yet, few works have been done on detecting the order of opera-
tions. Authors in [17] have examined the detection of the order of re-
sizing and contrast enhancement and proposed a forensic technique
to detect their order. However, due to the effect of later applied op-
eration on the fingerprints of earlier applied operations, the order of
operations in an operation chain is not always detectable. For exam-
ple, if JPEG compression or Gaussian noise is applied after contrast
enhancement, the fingerprints of contrast enhancement would be too
weak to be detected [15].

Therefore, a natural question would be “when can we or cannot
we detect the order of operations?” Authors in [18] proposed a mea-
sure of distinguishability on simple hypotheses problems. While in
this paper, we answer the question by formulating the problem of
detecting the order of operations into a more general multiple hy-
potheses testing problem. Then, we propose an information theoret-
ical framework and mutual information based criteria to determine
the condition of when we can distinguish all considered hypothe-
ses. The detection of the order of resizing and blurring is examined
in this paper to demonstrate the effectiveness of our framework and
criteria.

2. DETECTABILITY OF THE ORDER OF OPERATIONS

In [17], a forensic technique has been proposed to detect the order
of resizing and contrast enhancement, and simulation results have
shown that their order can be successfully detected. However, in
general, the order of operations may not always be detectable. Let
us consider an example of detecting the order of resizing and blur-
ring. In this problem, we consider the following five hypotheses for
possible processing history of a given image.

H0 : It is unaltered,
H1 : It is altered by A only,
H2 : It is altered by B only,
H3 : It is altered by B then A,
H4 : It is altered by A then B,

(1)

where A and B denote the operations of resizing and blurring re-
spectively.

We have found that the fingerprints of each hypothesis on the
discrete Fourier transform (DFT) of an image’s p-map [4] can be
used to contrast different hypotheses. As they are shown in Fig. 1(b)
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Fig. 1: Fingerprints for detecting the order of resizing and blurring. (a) and (b) are the original image and the DFT of its p-map, respectively. (c) - (f) show
the DFT of the p-map of (c) the resized image, (d) the blurred image, (e) the blurred then resized image, and (f) the resized then blurred image. Resizing factor
is 1.5 (upscaling). Gaussian blur is used with variance 1. Regions of interests are highlighted by dotted squares and circles.

- 1(f), if resizing is applied on the image, four distinct peaks can be
revealed from the DFT of an image’s p-map. If blurring is applied
as the last operation, an increase of noise energy can be observed in
high frequency component of the DFT of an image’s p-map. Then, if
resizing is applied before blurring, both fingerprints of resizing and
blurring will be seen, while for the case where resizing is applied
after blurring, fingerprints of blurring will be hardly detectable. For
both hypotheses, the DFTs of the p-map are more noisy than that of
a resized only image.

Based on these fingerprints, one may design forensic techniques
to contrast different hypotheses in (1). However, there are some
cases where the fingerprints are too weak to be detected. Fig. 2
shows a confusing example where blurring effect is weaker than that
in Fig. 1. We can see that the fingerprints of resizing then blurring
and blurring then resizing are hardly distinguishable. In this case,
we may not be able to detect the order of resizing and blurring.

3. INFORMATION THEORETICAL FRAMEWORK AND
MUTUAL INFORMATION BASED CRITERIA

In order to determine when we can or cannot detect the order of
operations, we formulate the order detection problems into multi-
ple hypotheses testing problems. Given the set of hypotheses the
given multimedia content may belong to, forensic investigators first
find fingerprints that can be used to contrast these hypotheses. Then,
based on these fingerprints, features can be extracted from the mul-
timedia content, and finally detectors will be used to obtain the de-
tected hypothesis. The process has been shown in Fig. 3.

LetH = {H0, H1, ..., HM−1} denote the set of considered hy-
potheses in a multiple hypotheses testing problem. Then the true
hypothesis and the detected hypothesis, denoted asH and Ĥ respec-
tively, belong to this set. Based on certain features, detectors with

tunable parameters θ, denoted as dθ , can be developed to contrast the
different hypotheses. For each choice of θ, we represent the perfor-
mance of the specific detector using a transition probability matrix
T(θ) with each element denoting the conditional probability of a
detected hypothesis given a true hypothesis, i.e.,

Ti,j(θ) = Pθ(Ĥ = Hj |H = Hi), 0 ≤ i, j < M. (2)

With this representation, we have proposed a feature dependent
abstract channel between the true hypothesis and the detected hy-
pothesis. The channel characterization is specified by the parameters
of the set of detectors, as it is shown in Fig. 3. Note that compar-
ing with our earlier work [19] which examined more fundamental
relationships between true hypotheses and features and proposed the
concept of forensicability, this work examines the relationship be-
tween true hypotheses and estimated hypotheses and gives a more
tractable way to determine the detectability of order of operations.

Given that different parameters of the detector yield different
detection performance, in order to determine whether we can dis-
tinguish hypotheses in (1), we first find the best detector and then
check if the best detector can distinguish all considered hypotheses.
Under the above information theoretical framework, we propose a
mutual information based criterion to obtain the best performed de-
tector whose detected hypotheses contain the maximum information
about the true hypotheses.

Definition 1 For detectors dθ1 and dθ2 , whose transition probabil-
ity matrices are T(θ1) and T(θ2) respectively, assume uniform pri-
ors of the true hypothesis H , then, detector dθ1 is better than dθ2 ,
w.r.t. the mutual information criterion, when

IT(θ1)
(H; Ĥ) > IT(θ2)

(H; Ĥ), (3)

where I(H; Ĥ) denotes the mutual information between H and Ĥ .
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Fig. 2: A confusing example that we may not be able to detect the order. Plotted are DFTs of the p-map of (a) the blurred image, (b) the blurred then resized
image, and (c) the resized then blurred image when resizing factor is 1.5 and the variance of Gaussian blur is 0.7.
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Fig. 3: A typical process of contrasting different hypotheses.

Then, we examine whether this best detector can successfully
distinguish all hypotheses by checking if the detection rate is higher
than any misdetection rate for each hypothesis.

Definition 2 Under the mutual information criterion, all hypotheses
can be distinguished by detectors dθ, θ ∈ Rk, if and only if

Hi = argmax
t∈H

Pθ∗(Ĥ = t|H = Hi), ∀i = 0, 1, ...,M − 1, (4)

where θ∗ are parameters of the best detector w.r.t. the mutual infor-
mation criterion. That is,

θ∗ = argmax
θ

IT(θ)(H; Ĥ). (5)

If the best detector can distinguish all hypotheses, then consid-
ered hypotheses in (1) can be distinguished and the order of opera-
tions can be detected; If the best detector cannot, then no detector
can distinguish the hypotheses and the order cannot be detected.

Furthermore, by checking which condition in (4) is violated, we
can understand the reason of why the order cannot be detected, that
is, which hypotheses are confused and cannot be distinguished. In
this framework, fingerprints of single manipulation operations and
conditional fingerprints in operation chains can be defined as well.

Definition 3 Consider an operation chain and its corresponding hy-
pothesis, denoted as Si and Hi respectively. Let S∅ and H∅ denote
the empty operation chain, and the hypothesis of unaltered multime-
dia content. If Si 6= S∅, then the fingerprints of Si are a set of
features that can be used to distinguish {Hi, H∅}. Next, we con-
sider another operation chain, denoted as Sj . If Si is a sub-chain
of Sj , let Sj\i denote the operation chain of Sj excluding Si. Hj\i
is denoted as the corresponding hypothesis of Sj\i. Then, the con-
ditional fingerprints of Si given Sj are a set of features that can be
used to distinguish the following hypotheses:

{Hj\i, Hi, Hj}.

To better understand the difference between fingerprints and
conditional fingerprints, we give an example. Let Si and Sj de-
note the operation chain of contrast enhancement only and contrast
enhancement then resizing, respectively. Then, Sj\i represents the
operation chain of resizing only. The fingerprints of Si can be the
high frequency components of the DFT of the pixel histogram [6].
However, these cannot be the conditional fingerprints of Si given Sj
because Hj\i and Hj cannot be distinguished by these fingerprints.
In [17], the conditional fingerprints of Si given Sj contains two
features. One is the maximum gradient of the periodogram of the
Fourier transformed p-map, which is the fingerprint of resizing. The
other feature is the distance of normalized histograms between the
full image and the down-sampled image [17]. By using these two
features, we can distinguish hypotheses Hj\i, Hi, and Hj .

4. DETECT THE ORDER OF RESIZING AND BLURRING

In order to demonstrate the effectiveness of our proposed framework
and criteria, we use the example of detecting the order of resizing
and blurring. We first develop a forensic technique to distinguish the
five hypotheses in (1) based on the fingerprints shown in Fig. 1.

Two features have been used in our detectors. One is the peak
signal to noise ratio (PSNR) feature used to capture the four peaks
in the DFT of an image’s p-map and also the noise energy around
these peaks. The other feature is to capture the noise energy pattern
around the corners of the DFT of an image’s p-map.

Let Z = {Zm,n} denote the magnitudes of the DFT of a
p-map. The origin is located at the upper left corner of the ma-
trix with size a by a. We first calculate the PSNR for the left
peak in the DFT of an image’s p-map. Let yl denote the mag-
nitudes of the left part of the horizontal line in Z, i.e., yl =
[Zba/2c+1,1, Zba/2c+1,2, ..., Zba/2c+1,ba/2c+1−α], where α is the
size of the mask window used in the center of Z to eliminate the
effect from low frequency component.
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Let x denote the index of the vector yl. We have observed that
the noise mean increases with x. To eliminate this nonuniform noise
mean, we first use the following linear regression model to fit yl,

yl = a1x+ b1 + n. (6)

After estimating the parameters â1 and b̂1, the PSNR feature will be
calculated on the difference signal dl = yl − â1x− b̂1,

PSNRl =
yp

mean0<|x−xp|<ε

(∣∣dl(x)∣∣) , (7)

where xp and yp are the index and magnitude of the peak respec-
tively, and ε is a small positive constant.

Similar procedure can be applied on the other three peaks at
right, top, and bottom. The final PSNR feature is the maximum value
of the four PSNRs.

To obtain the noise energy pattern at the corners of Z, we first
obtain the energy signal E as

E = Z ⊗ 1w, (8)

where 1w is an all one matrix of size w by w, and⊗ is a convolution
operator. Then, the noise pattern signal is calculated as the mean
signal of the boundary signals of E,

ye(x) =

(
Ev,a/2+x +Ea/2+x,a−v +Ea−v,a/2−x +Ea/2−x,v

)
4

,

(9)
where v − a/2 ≤ x < a/2− v and v = dw/2e+ 1.

To characterize the increase of noise energy in high frequency
component, i.e., the tails of the signal ye, we use a second order
polynomial model to fit the signal as

ye = a2x
2 + b2x+ c2. (10)

Then, by examining the convexity of the estimated signal, i.e., the
sign of the estimated â2, we can detect whether the noise energy
increases with |x|.

Combining these two features together, the decision rule of our
detector is as follows,

Ĥ =


H0, if PSNR < τ1 and â2 < 0,
H1, if PSNR ≥ τ2,
H2, if PSNR < τ1 and â2 > 0,
H3, if τ1 ≤ PSNR < τ2 and â2 < 0,
H4, if τ1 ≤ PSNR < τ2 and â2 > 0.

(11)

The parameters of our proposed detector are θ = (τ1, τ2).

5. SIMULATION RESULTS

Although detectors have been proposed to detect the order of resiz-
ing and blurring, there are cases where the fingerprints are so weak
that we can hardly detect the order of these two operations, as we
have shown in Fig. 2. Using our information theoretical framework
and criteria, we can know when this order can or cannot be detected.

We first set up a testing image databased based on the 1338 im-
ages in the UCID database [20]. To simulate blurring operations, we
used Gaussian blur with filter window 5 by 5 and variance ν. We
used a wide range of resizing factors, denoted as s, from 0.5 to 2.
For each s = {0.5, 0.55, ..., 2} and ν = {0.5, 0.55, ..., 1}, the test-
ing database contains: 1338 unaltered images, 1338 resized images
with scaling factor s, 1338 blurred images with Gaussian variance ν,
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Fig. 4: Distinguishability test results of detecting the order of resizing and
blurring by applying our information theoretical framework and criteria.

1338 blurred then resized images, and 1338 resized then blurred im-
ages. To avoid distorting the image too much, we set ν ≤ 1, which
was obtained by calculating the distortion introduced by blurring us-
ing the structure similarity (SSIM) index [21] and then setting the
reasonable SSIM values to be greater than 0.9.

Based on the detector with tunable parameters in last section, we
use our information theoretical framework and criteria to obtain the
distinguishable and indistinguishable cases for different pairs of re-
sizing factor and blurring parameter. Specifically, for each value of
s and ν, we first calculate the transition probability matrices (2) for
all possible values of detector parameters θ∗. Then, using definition
1, we can obtain the best parameters θ∗. Based on this best detector,
we use definition 2 to determine whether we can or cannot distin-
guish all hypotheses in (1), i.e., can or cannot detect the order of
resizing and blurring. Fig. 4 shows the results for all combinations
of resizing factors and blurring parameters.

To understand why we cannot detect the order of resizing and
blurring in those indistinguishable cases, we analyzed the indistin-
guishable cases close to the range of the distinguishable cases to find
what makes the distinguishable cases become indistinguishable, i.e.,
which condition was violated in (4). We have found that, for most
cases, the reason was that the hypothesis of resizing then blurring
and blurring then resizing cannot be distinguished. This matches the
example we have shown in Fig. 2 where the fingerprints in Fig. 2(b)
and Fig. 2(c) are similar.

6. CONCLUSION

In this paper, we studied the fundamental question of when we can
or cannot detect the order of operations. To answer this question,
we formulated the order detection problem into a general multiple
hypotheses testing problem. Then, we proposed an information the-
oretical framework and mutual information based criteria to obtain
the best detector and answer the question of when we can distinguish
all considered hypotheses. For case study, we examined the problem
of detecting the order of resizing and blurring, where the order may
not always be detectable. Forensic techniques have been proposed to
detect the order of these two operations, and simulation results have
shown the effectiveness of our proposed framework and criteria.
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