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ABSTRACT

Secure multi-party computation (MPC) has been established as the
de facto paradigm for protecting privacy in distributed computation.
Information-theoretic secure MPC protocols, though more efficient
than their computationally secure counterparts, require at least three
computational parties and are prone to collusion attacks. Previous
work has used mechanism designs to deter collusion. An important
element missing is the consideration of how different players value
privacy. In this paper, we provide a detailed analysis of possible out-
comes under different privacy preferences based on the relative cost
of collusion attacks over loss of privacy. We explicitly calculate the
conditions under which honesty is the solution. Simulation results
provide further evidence to demonstrate the validity of our mecha-
nism design.

Index Terms— signal processing, encrypted domain processing,
secure mpc, game theory

1. INTRODUCTION

Privacy protection in distributed computing enables distrusting par-
ties to participate in a joint computation without revealing their se-
cret data. As more personal information is being processed under
various cloud computing platforms, there is an increasing demand
for privacy protection solutions that enable collaboration without
giving up valuable and sensitive data. The standard approach to pro-
tect privacy in distributed computation is to use secure multiparty
computation or Secure MPC protocols. However, despite being ac-
tively researched for more than 30 years, Secure MPC protocols are
still rarely used in practical systems [1].

One reason for the poor deployment of Secure MPC is its signif-
icant communication and computational costs [2]. Commonly used
Secure MPC protocols, such as those based on homomorphic en-
cryption and garbled circuits, operate on encrypted data and are se-
cure against computationally-bound adversaries [3]. An alternative
is to use the information-theoretic Secure MPC (ITS-MPC) proto-
cols based on results in [4], otherwise known as the Ben-Or, Gold-
wasser and Wigderson (BGW) protocol. In these protocols, informa-
tion exchanged between different parties is statistically independent
of the secret data. As ITS-MPC protocols do not depend on the dif-
ficulty of specific computational problems, they often use a smaller
finite field for data representations and produce more efficient appli-
cation protocols [5, 6, 7].

A major disadvantage of the BGW protocol is the need to
maintain a majority of non-colluding computational parties [8].
Researchers have long pointed out the danger of collusion attacks
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in outsourced computations [9]. In fact, collusion attacks are sig-
nificant real-life problems and occur in many networked applica-
tions [10, 11]. In our earlier work, we proposed a framework to
deter collusion in a BGW-based distributed computing platform by
retaliation mechanisms, fake collusion attacks, and a censorship
scheme [5]. The advantage of the approach proposed in [5] over
other techniques is that no centralized server or computationally-
intensive protocols are needed, making it ideal for high-throughput
signal processing applications.

A key aspect to deter collusion is to understand the incentive be-
hind such an attack, which is often based on the relative value of the
secret over the risk of the collusion, i.e. getting caught and suffering
from its consequence. Due to the heterogeneity of participants, a real
world market can have very different evaluations of secrets which
may lead to different outcomes. However, the analysis in [5] tackles
only one specific case. In this paper, we further extend the scheme
in [5] by considering the heterogeneity of the participants. We care-
fully analyze all possible privacy preferences, show for each case the
condition under which honesty is the solution, and discuss their im-
plications on the price for the distributed service and the strategies
in growing such a market.

The rest of the paper is organized as follows: Section 2 describes
the collusion attack models. Related work is discussed in Section 3.
Section 4 introduces a series of the User-Vendor games to deter col-
lusion attempts from the secret-data owners. Experimental results
are presented in Section 5. We conclude the paper with future work
in Section 6.

2. PROBLEM STATEMENT AND ATTACK MODELS

Our outsourcing computing framework comprises two types of par-
ticipants: the computing platform agents, denoted as Ai where i ∈
{1, 2, . . .}, and the platform customers, i.e. the secret-data owners.
Denote any pair of platform customers as U (User) and V (Vendor)
who want to cooperate in a joint computation. We assume that there
is a coordinator C who is responsible for keeping records of the IDs
of participants but does not handle any actual secret data. We focus
our discussions on two parties but the scheme is general enough for
an arbitrary number of parties.

U and V do not trust each other with their secret data and they
do not possess the necessary CPU power for the computation. They
outsource their computation to the computing platform by means
of Secure MPC protocols. Despite its simplicity, this model is an
abstraction of many practical scenarios. For example, in cloud com-
puting, Ai provides platform as a service (PaaS) while U provides
sensitive data and V provides proprietary software [12]. Note that
our emphasis is on protecting the privacy of data, rather than the
programming instructions.
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Imagine an outsourced computation is built from the BGW pro-
tocol. We need at least n = 3 agents to carry out any arithmetic
operations [13]. As such, no collusion can be tolerated since any
two agents can reconstruct the secret.

Collusion, modeled as a covert adversarial behavior, can occur
between one of the data owners and a portion of computing agents, or
among the computing agents themselves. We can identify three types
of collusion attacks. A1: side-channel attacks: If an adversary
controls a majority of computing agents, they can exchange their se-
cret shares freely through their pre-established side channels outside
of the protocol to steal secrets. System-based approaches such as
anonymous communication [14] and program obfuscation [15] can
make the coordination harder but cannot provide any form of guar-
antee on preventing the formation of side channels. We assume that
no such side channels exist among agents and model the adversaries
as localized [16]. A2: Collusion between agents and U or V: We
will focus on the agents’ collusion with U , as the case for V is iden-
tical. As each agent possesses secret shares from both U and V , it
is possible for U to collude with enough agents to reconstruct the
secret from V . No changes in infrastructure can block such an at-
tack as it is necessary for U to communicate with the agents. Neither
can the collusion be detected from the communication between the
agents and V . In Section 4, we study our mechanism between U
and V to deter them from cheating. A3: Collusion among agents:
The direct communication among agents is essential as it is needed
in some procedures [17]. At the same time, direct communication
opens doors for collusion. Using a star-shaped network topology,
our previous work proposed a censorship scheme for U and V to de-
stroy subliminal communication among agents [5]. This attack will
not be addressed in this paper.

3. RELATED WORK

Colluding communication usually exists in two different forms:
through side-channels external to the protocol, or through sub-
liminal communication within the protocol as hidden data [18].
Algorithmically, it is impossible to design protocols to curtail com-
munications over side-channels. Existing anti-collusion techniques
focus on eliminating subliminal communication by relying on ei-
ther a semi-honest/trusted centralized server or a specially-designed
ballot box [19, 18, 20]. A special computer called a verifiably se-
cure device or VSD was devised to which all players physically
submit envelopes and ballot boxes [19]. In [18, 20], the mediated
multiparty computation (MMPC) achieves the collusion-deterrence
by means of an honest mediator who carries out a two-party secure
function evaluation (SFE) with each party. All of the above ap-
proaches require heavy computation at a fortified centralized server,
which defeats the efficiency goal of using BGW based ITS-MPC
techniques.

General consideration of attacks on Secure MPC protocols in-
clude two different aspects: 1) how parties are identified and cor-
rupted by an adversary, and 2) how corrupt parties behave under the
control of an adversary. For the first question, existing classifications
typically focus on whether an honest party becomes corrupted dur-
ing the course of the computation [21]. For collusion attacks, such a
question is far less important than how an honest party is corrupted
by an adversary to collude in stealing a secret – is it due to informa-
tion received in-band as part of the defined protocol or out-of-band
through side channels? The first kind is termed a local adversary

attack as it is based on local information anticipated by the protocol.
The local adversarial model has been used to model collusion attacks
in [16] and will be assumed in our mechanism design.

As for the second question, adversarial behaviors are typically
classified into semi-honest and malicious. Assuming that there is
a rational being behind each participant, there must be an external
reason behind such a decision such as a higher reward or a non-
negligible probability to get caught. Such behaviors are best mod-
eled via a covert adversarial model [22]. Covert security tries to
model the situations in daily life: adversaries are willing to cheat
if the cheating will not be detected. There are prior works in com-
putationally Secure MPC under the covert model [23, 24] and our
proposed mechanism is an effort to extend it to ITS-MPC. The no-
tion of covertness suggests the rational decision process of agents.
There are prior studies on the use of game-theoretic construction for
rational Secure MPC and rational secret sharing [25, 26]. In rational
Secure MPC, each party has his/her own secret held in “hostage” by
other peer parties and the goal is to encourage players to exchange
shares so that all parties benefit from knowing the final answers.
In contrast, our computing agents are forbidden to exchange secret
shares to learn anything about the secret.

4. COLLUSION DETERRENCE GAMES

In this section, we describe the mechanisms that thwart type A2 col-
lusion attacks described in Section 2 formed between the computing
agents and one of the customers (either U or V ) to steal the other’s
secret.

Before starting the joint computation, there must be a legally-
binding contract in place so that U and V both understand that they
should not collude with agents in stealing each other’s secret. Ev-
idence collecting measures, such as a traitor tracing code, can be
applied to the secret inputs to track the source of secret leakage. If
one party, say V , finds out that U tried to steal V ’s secret, U would
be liable to pay for the damages based on charges brought on by V .
In retaliation, U could countercharge V with similar accusations and
both parties would provide evidence to an authority for a judgment.
We call this strategy undertaken by U and V retaliation.

With the initial strategy of staying honest or cheating and the
follow-up strategy of possible retaliation, there are four possible
combinations for each player or a total of 16 different interaction
outcomes between them. All possible cases are listed in Table 1 with
CU , CV = 1 representing cheating and RU , RV = 1 representing
retaliation.

Table 1: Different Outcomes in User-Vendor Games

Case CU CV RU RV Outcome
1 0 0 0 0 D
2 0 0 0 1 X
3 0 0 1 0 X
4 0 0 1 1 A
5 0 1 0 0 E
6 0 1 0 1 X
7 0 1 1 0 X
8 0 1 1 1 A
9 1 0 0 0 C
10 1 0 0 1 X
11 1 0 1 0 X
12 1 0 1 1 A
13 1 1 0 0 B
14 1 1 0 1 X
15 1 1 1 0 X
16 1 1 1 1 A

We mark unlikely outcomes with X based on the an-eye-for-an-
eye assumption: if one party retaliates by filing charges for a sus-
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pected cheating offense, the other party will retaliate with a counter-
lawsuit, an assumption supported in real life by the large number of
litigations, especially in the United States [27]. Hence, cases 2, 3, 6,
7, 10, 11, 14 and 15 are excluded from further considerations.

To study the preference ranking of these outcomes, we assume
the perspective of U because the case for V is almost identical. We
use a cost and benefit analysis to eliminate unlikely preference orders
and model the remaining ones using different games.

The mutual retaliation always results in the least desirable out-
come A. Outcome C is clearly the most desirable because U success-
fully steals V ’s secret and suffers no consequence. As V is honest,
V ’s secret should be of high enough value to cover U ’s cost in collu-
sion if this collusion attack is a rational act. All of the other outcomes
are not as good. In summary, there are three preference orders we
need to consider:

C � D � E � B � A (1)

C � D � B � E � A (2)

C � B � D � E � A (3)

where the symbol � is understood as “is preferred over”. A useful
way to understand these orders is based on the cost of collusion. For
example, Preference (1) ranks B the lowest because the high cost of
collusion exceeds even the damage of losing one’s own secret in E.

As we have five outcomes to consider, we denote the normalized
utility values for these outcomes as 0 = p0 < p1 < p2 < p3 <
p4 = 1. For the three preference orders corresponding to a high
collusion cost (1), medium collusion cost (2) to low collusion cost
(3), the assignments of the utility values are shown in Table 2.

Table 2: Normalized Utility of Different Outcomes in User-Vendor Games

U ’s Preference
Strategies High cost (1) Mid cost (2) Low cost (3)

Retaliate (A) p0 p0 p0

Both cheat (B) p1 p2 p3

U cheats only (C) p4 p4 p4

No one cheats (D) p3 p3 p2

V cheats only (E) p2 p1 p1

We define q as the “non-retaliating” probability for both U and
V , conditioned on the other’s cheating behavior. The extreme value
q = 1 means that no one retaliates while q = 0 means that one al-
ways retaliates if his/her secret is stolen. We first analyze Preference
(3) in the game described in the following table.

V

U

Honest Cheat

Honest (p2, p2)
(1− q)(p0, p0)

+q(p1, p4)
= (qp1, q)

Cheat
(1− q)(p0, p0)

+q(p4, p1)
= (q, qp1)

(1− q2)(p0, p0)
+q2(p3, p3)

= (q2p3, q
2p3)

The two-tuple in each entry indicates the average payoffs of U
and V when adopting the row and column strategies respectively. To
make the honest strategy a solution, either (a) p2 > q, or (b) p2 = q
and qp1 > q2p3, i.e. p1 > qp3 = p2p3, which are possible to
obtain. For cheating to be a solution, either (c) q2p3 > qp1, i.e.
qp3 > p1, or (d) q2p3 = qp1 and q > p2, i.e. p1 = qp3 > p2p3.
Note that conditions (b) and (d) are the same except that (b) requires
p2 = q which is very difficult to sustain, so the situation is a mixed
strategy of honesty and cheating:

hu = hv =
1

q−p2
q(p1−qp3)

+ 1
(4)

where hu and hv are the honest probability of U and V respectively.
Similarly, for Preference (1), Honesty is achieved for both U and V
if p3 ≥ q. When the theft is undetectable, i.e. p3 < q, it can be
shown that the following mixed strategy is the solution:

hu = hv =
1

q−p3
q(p2−qp1)

+ 1
(5)

For Preference (2), there is a general solution indicating the honest
fraction as

hu = hv =
1

q−p3
q(p1−qp2)

+ 1
(6)

The above analysis serves as proof for the following summarized
results.

Theorem 4.1. For all the three preference orders outlined in (1), (2)
and (3), (honest, honest) is the solution if both players being honest
has strictly higher utility than the successful stealing of other’s se-
cret, i.e. p3 > qp1 + (1 − q)p0 = q for (1) or (2), and p2 > q
for (3). If the two utilities are equal, (honest, honest) is still the
solution for preference order (1), but preference orders (2) and (3)
require an additional condition that losing one’s secret has higher
utility than mutual theft, i.e. p1 > qp2 + (1 − q)p0 = qp2 for (2)
and p1 > qp3 + (1− q)p0 = qp3 for (3).

Theorem 4.2. For (2) and (3), (cheat, cheat) is the solution if mutual
theft has strictly higher utility than losing one’s secret, i.e. qp2 > p1
for (2) or qp3 > p1 for (3). If the two utilities are equal, (cheat,
cheat) is still the solution if successful stealing has higher utility and
both being honest, i.e. q > p3 for (2) or q > p2 for (3). (Cheat,
cheat) is not a solution for (1).

Corollary 4.3. If none of the conditions in Theorems 4.1 and 4.2 are
met, the solution is a mixed strategy.

Theorem 4.1 is important because making p3 high by providing
and paying for high-quality services, and providing state-of-the-art
theft tracking technology such as watermarking to make q small are
both reasonable mechanisms in maintaining a viable market. Corol-
lary 4.3 suggests that additional mechanisms are required to make
collusion harder, such as the policing and censorship described in
our earlier work [5].

5. EXPERIMENTS

In this section, we want to validate our results by simulating behav-
iors of a large number of customers playing the User-Vendor games
in an online privacy computation market based on the GameBug
simulator [30]. Similar to any large scale online markets, each cus-
tomer is uncertain about others’ actions and thus will attempt differ-
ent strategies in order to maximize the payoff. Like the peer-to-peer
streaming game in [28], we adopt the replicator dynamics (RD) to
model the evolution of the group size over time.

Consider initially there are both groups of customers playing ei-
ther “honesty” or “cheating”. We are interested in how the popu-
lation evolves under our game in choosing strategies. Denote the
payoff of strategy si as usi , the average payoff as ū, the proportion
of individuals using si as xi, and its rate of change as ẋi. The RD
equation is given as ẋi = (usi − ū)xi [29]. This equation can be
interpreted as follows: provided that a customer stay in the market,
a larger advantage of a strategy’s payoff over the average will cause

2046



the customer to switch sooner to that strategy. As such, the growth
rate of the customers using each strategy is proportional to the excess
of the strategy’s payoff over the average payoff.

Denote the game using the order in (1) as G1, the order in (2)
as G2 and the order in (3) as G3. Each user in the system is ran-
domly matched with a vendor from the same population for cooper-
ations. Recall that q is the non-retaliation probability and pi is the
i-th ranked payoff. At the beginning of the simulation, 90% of the
populations are honest. We first test the scenario of G1, with q ≤ p3.
The initial population profile evolves very quickly toward the pure-
honesty as depicted in Fig. 1. In sharp contrast, q > p3 leads to a
mixed profile with hu = hv = 0.8. Fig. 2 shows this evolution in
the population whose profile gradually converges to the mixed pro-
file as marked by the solid black line. Second, we test the scenario
of G2. Under the condition p3 > q, the honest strategy prevails
quickly as depicted in Fig. 3. Under the alternative honest condi-
tion p1 > p2p3 and p3 = q, however, the honest behavior evolves
very slowly as depicted in Fig. 4. Both the conditions qp2 > p1 and
p1 > p2p3 and q > p3 lead the population to evolve to cheating,
as depicted in Fig. 5. Third, we simulate G3. The honest condition
p2 > q yields a relatively slow system evolution compared to the
previous two games, and the condition p1 > p2p3 and p2 = q has a
much slower evolution, as depicted in Fig. 6 and 7 respectively. The
cheating conditions qp3 > p1 or p1 > p2p3 and q > p2 have very
similar effects as that of G2, depicted in Fig. 8.

Fig. 1: Emergent Behavior in G1 when q < p3

Fig. 2: Emergent Behavior in G1 when q > p3

Fig. 3: Emergent Behavior in G2 when q < p3

Fig. 4: Emergent Behavior in G2 when p1 > p2p3 and p3 = q

Fig. 5: Emergent Behavior in G2 when either qp2 > p1 or p1 > p2p3 and q > p3

Fig. 6: Emergent Behavior in G3 when q < p2

Fig. 7: Emergent Behavior in G3 when p1 > p2p3 and p2 = q

Fig. 8: Emergent Behavior in G3 when either qp3 > p1 or p1 > p2p3 and q > p2

6. CONCLUSION

In this paper, we have demonstrated the impact of privacy preference
on deterring collusion attacks in ITS-MPC frameworks via theoreti-
cal analysis and simulations. The limitation of our analysis is in the
adherence to symmetric games in which both players have the same
preference. We are currently extending our analysis using Bayesian
Games to better model the uncertainty and asymmetry of privacy
preferences in real-world scenarios.

2047



7. REFERENCES

[1] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
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