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ABSTRACT

The study of universal detector for fingerprinting code is
strongly dependent on the design of scoring function. The
best detector is known as the MAP detector that calculates
an optimal correlation score, but the number of colluders and
their collusion strategy are inevitable. Although there are
some scoring functions under some collusion strategies and
asymptotic analyses, their numerical evaluation has not been
done. In this study, their performance is evaluated for some
typical collusion strategies using a discretized bias-based
binary fingerprinting code. We also propose a simple but
efficient scoring function based on a heuristic observation.

Index Terms— fingerprinting code, scoring function, col-
lusion attack

1. INTRODUCTION

Fingerprinting technique is a means for tracing illegal users
from a pirated copy. At the distribution of a copy, digital con-
tent is watermarked uniquely by embedding fingerprint infor-
mation. The main threat of the technique is the collusion at-
tack such that a coalition of users compare their copies and
modify/delete the embedded information. One of the most
important breakthroughs is the invention of bias-based finger-
printing code such as Tardos code [1] and Nuida code [2].

The Tardos’ scoring function [1] which computes a level
of suspicion for each user was improved by Škorić et al. [3]
considering the symmetric characteristic of code generation
process. If the score exceeds a certain threshold, the corre-
sponding user is regarded as guilty. The detector of finger-
printing code includes the scoring function and the decision
function with a false-positive probability as input. The Tar-
dos’ and Škorić’s detectors provide a stable performance in-
dependent of the collusion strategy. The decoder does not take
the collusion strategy into account at the scoring function.

If the number c of colluders and the collusion strategy
θc are known in advance, the MAP detector [4] is optimal.
The difficulty in the algorithm is how to estimate the number
of colluders and their collusion strategy from a given pirated
codeword. In case of mismatch of estimated parameters, the

results may differ drastically. Oosterwijk et al. [5] studied the
impacts of mismatching cases on the score, and claimed that
the interleave-defense is the better choice among some typ-
ical collusion strategies. Related to the study, the design of
universal detector gets much attention. The universal detector
implies that for arbitrary collusion strategy the performance
is better than the stable detector like the Škorić’s symmetric
scoring function.

In this paper, we review conventionally proposed scor-
ing functions and investigate the performance using the dis-
cretized bias-based code. In the comparison, we assume the
detection strategy as catch-many type which try to catch as
many collders as possible under a constant false-positive. Dif-
ferent from the conventional works, the bias equalizer [6] uti-
lizes the characteristics of discretized bias distribution. In
a bias-based binary fingerprinting codewords, the number of
symbols “1” in a codeword is expected to be equal to that of
symbols “0”, though the probability that a symbol at a certain
element is biased in a codeword. After a collusion attack, the
number of symbols is not always balanced in a pirated code-
word, and hence, the information about the collusion attack
can be derived from the observation of symbols. Such biases
of symbols are exploited to calculate weights for correlation
scores in the bias equalizer.

We also study the scoring function of bias equalizer and
propose a classification method of attack strategy in a heuris-
tic approach. From the observation of effects on scoring func-
tion, we discover that some weighting parameters in the scor-
ing function should be excluded or be replaced with better
ones according to collusion strategies. The performance is
also compared with the conventional scoring functions.

2. FINGERPRINTING CODE

Since Tardos [1] introduced a new construction of fingerprint-
ing code, the class of bias-based code becomes popular. In
this section, we review the construction and the related topic
on the bias-based code.

A binary codeword of j-th user is denoted by Xj,i ∈
{0, 1}, (1 ≤ i ≤ L), where Xj,i is generated from an in-
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dependently and identically distributed random number with
a probability pi such that Pr[Xj,i = 1] = pi and Pr[Xj,i =
0] = 1 − pi. This probability pi in the Tardos code follows
a continuous distribution P over an open unit interval (0, 1),
which is called bias distribution. Nuida et al. [7] discretized
the distribution P to obtain the optimal one for arbitrary col-
lusion size. In essence, the construction of the codeword is
similar to that of Tardos code and the same detector can be
applied for a given probability pi. For both cases, the maxi-
mum number of colluders should be determined at the setup
of code. For convenience, we denote by cmax the number in
this paper. In the operational mode, the parameters pi and
Xj,i and cmax have been already determined.

Suppose that a pirated codeword yi, 1 ≤ i ≤ L is pro-
duced by a certain collusion strategy from c colluders. The
correlation score of j-th user is calculated by the sum of each
piece Sj,i for each element ci of codeword with length L,
namely, Sj =

∑L
i=1 Sj,i. The original tracing algorithm only

use a half of information from a pirated copy because the
value of the score Sj,i becomes zero when yi = 0. In order
to utilize the whole information, S̆korić et al. [3] proposed a
symmetric version of the scoring function.

Ssym
j,i =



√
pi

1−pi
if Xj,i = yi = 0

−
√

pi

1−pi
if Xj,i = 0, yi = 1

−
√

1−pi

pi
if Xj,i = 1, yi = 0√

1−pi

pi
if Xj,i = yi = 1

(1)

A single detector calculates each score to each user
based on the available data. The performance of the de-
tector strongly depends on the scoring function whether it
can distinguish between two cases: user j is guilty or in-
nocent. The scoring function should consider the trade-off
between the false-positive error (accusing an innocent user)
and the false-negative error (not accusing a guilty user).

According to the Neyman-Peason lemma, the optimal
scoring function is given by the following log-likelihood
ratio:

SMAP
j,i = log

(
Pr[yi|Xj,i, pi,θc]

Pr[yi|pi,θc]

)
. (2)

3. UNIVERSAL SCORING FUNCTION

The analysis in this paper targets for a single detector such
that calculates a score per user. There are some methods to
calculate the score Sj,i from pi, Xj,i, yi, and some other pa-
rameters. In this section, we briefly review the methods.

3.1. Oosterwijk’s Method

The universality and optimality of scoring function tailored
against some attacks has been investigated in [5]. When it is
tailored against the interleaving attack, the min-max game for

the asymptotic code rate has a saddle-point. So, Oosterwijk
proposed the following scoring function.

SOos
j,i =


1

1−pi
− 1 if Xj,i = yi = 0

−1 if Xj,i ̸= yi
1
pi

− 1 if Xj,i = yi = 1
(3)

In order to bound its amplitude, the cut-off parameter of the
bias probability should be given.

3.2. Laarhoven’s Method

Laarhoven [8] showed that the detector designed against the
interleave attack is a universal detector, and achieves the fin-
gerprinting capacity under the condition such that the collu-
sion strategy is not given. In order to get rid of the cut-off
parameter, i.e. P = (0, 1), in the Oosterwijk’s method, the
scoring function is modified by strictly analyzing the effects
of interleave attack.

SLaa
j,i =


log
(
1 + pi

c(1−pi)

)
if Xj,i = yi = 0

log
(
1− 1

c

)
if Xj,i ̸= yi

log
(
1 + 1−pi

cpi

)
if Xj,i = yi = 1

(4)

The advantage of the scoring function is to get rid of the cut-
off parameter. However, it needs to know c.

3.3. Meerwald’s Method

Under the assumption that the real collusion size c is less than
or equal to cmax, the correlation score in [9] is respectively
calculated for c selected from [1, cmax], where the scoring
function is based on the MAP detector designed for WCA
θWCA
t , 1 ≤ t ≤ cmax. The score SMee

j,i is determined one of
the cmax candidates which value becomes maximum.

SMee
j,i = max

1≤t≤cmax

{
log

(
Pr[yi|Xj,i, pi,θ

WCA
t ]

Pr[yi|pi,θWCA
t ]

)}
(5)

3.4. Desoubeaux’s Method

Similar to the Meerwald’s method, Desoubeaux [10] cus-
tomized the scoring function for coin flip attack defense and
aggregate cmax candidates in the following manner.

SDes
j,i = log

(
cmax∑
t=1

t ·
(
Pr[yi|Xj,i, pi,θ

coin
t ]

Pr[yi|pi,θcoin
t ]

))
(6)

3.5. Bias Equalizer

In binary fingerprinting codes, the number of symbols “0” and
“1” is generally balanced because of the design of the code-
word. After a collusion attack, the number of symbols is not
always balanced in a pirated codeword. Certain information
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about the collusion attack can be derived from the statistical
analysis of symbols. The bias of symbols is utilized to calcu-
late weights for correlation scores in [6].

Suppose that there are n candidates for the probability pi
in a discrete version of bias distribution. Hence, pi, (1 ≤ i ≤
L) can be classified into n groups. The number of elements
in each group is expected to be qξL, (1 ≤ ξ ≤ n), where qξ is
the emerging probability of pi in the group. For convenience,
the number of elements is denoted by ℓξ where ℓξ ≥ 0 and∑n

ξ=1 ℓξ = L, and the numbers of symbols “0” and “1” are
denoted by ℓξ,0 and ℓξ,1, respectively.

Without loss of generality, we classify the elements yi of
a pirated codeword into n groups according to the probability
pi. At ξ-th group, the correlation score SBias

j,i,ξ is calculated as
follows.

SBias
j,i,ξ =



ℓξ,1
ℓξ

√
pi

1−pi
if Xj,i = yi = 0

− ℓξ,0
ℓξ

√
pi

1−pi
if Xj,i = 0, yi = 1

− ℓξ,1
ℓξ

√
1−pi

pi
if Xj,i = 1, yi = 0

ℓξ,0
ℓξ

√
1−pi

pi
if Xj,i = yi = 1

(7)

Let Iξ be the set of indices i which probability pi belongs to
ξ-th group. Then, the total score Sj is calculated by

Sj =
n∑

ξ=1

∑
i∈Iξ

SBias
j,i,ξ . (8)

4. PROPOSED METHOD

It is experimentally reported in [6] that the bias equalizer im-
proves the performance of symmetric detector for some typi-
cal collusion strategies. However, there are considerable gaps
for the all-0, all-1, minority, and coin-flip attacks.

When all-0 or all-1 attack is performed, the following re-
lationships are observed.{

ℓξ,0 ≈ ℓξ, if pi < 0.5 holds for all ξ
ℓξ,1 ≈ ℓξ, if pi > 0.5 holds for all ξ

(9)

In the above cases, we empirically adjust the scoring function
to maximize the total performance.

SBias†

j,i,ξ =



ℓξ,0ℓξ,1
L0

√
pi

1−pi
if Xj,i = yi = 0

− ℓξ,0ℓξ,1
L1

√
pi

1−pi
if Xj,i = 0, yi = 1

− ℓξ,0ℓξ,1
L0

√
1−pi

pi
if Xj,i = 1, yi = 0

ℓξ,0ℓξ,1
L1

√
1−pi

pi
if Xj,i = yi = 1

(10)

where L0 and L1, respectively, stand for the number of “0”
and “1” elements in a pirated codeword y. For the classifica-
tion, we introduce a threshold T † to check the following two
cases:

• ℓξ,0/ℓξ > T † holds for all ξ that satisfies pi < 0.5

• ℓξ,1/ℓξ > T † holds for all ξ that satisfies pi > 0.5.

If one of the above two conditions is satisfied, the correlation
score SBias†

j,i,ξ is used instead of SBias
j,i,ξ in Eq.(8).

When the minority or coin-flip attack is performed, the
following relationships are observed for ξ-th group.

ℓξ,0
ℓξ,1

<
√

1−pi

pi
, if pi < 0.5

ℓξ,1
ℓξ,0

<
√

pi

1−pi
, if pi > 0.5

(11)

When pi or 1 − pi is not close to 0, their scores SBias
j,i,ξ affect

the total sum in a negative way as an interference. Hence,
these scores are excluded in the proposed method. We also
introduce a threshold T ‡ for the classification of such a case.
Let n‡ be the number of the groups ξ that satisfy Eq.(11). If
n‡ ≥ n/2, then the correlation score is calculated by

SBias‡

j,i,ξ =

{
0 if T ‡ < pi < 1− T ‡

SBias
j,i,ξ otherwise , (12)

and it is used instead of SBias
j,i,ξ in Eq.(8).

5. EXPERIMENTAL RESULTS

For the comparison of the performance of scoring functions
enumerated in the previous section, we perform the Monte
Carlo simulation such that pirated codewords are produced by
collusion attack on randomly selected 103 combinations of c
colluders. The number of users was N = 106, and the false-
positive probability was ϵ1 = 10−10, namely, η ≈ 10−4. We
used Nuida code with cmax = 8 and L = {1024, 2048}. The
thresholds in a proposed method are fixed by T † = 0.95 and
T † = 0.1 through the experiments, and is calculated by rare
event simulator1.

Tables 1 shows the sum of detected colluders for 2 ≤ c ≤
10, where the maximum is 54 =

∑10
c=2 c. In case of the sym-

metric scoring function [3], the obtained results indicate that
the “minority” strategy is the most damaging one, though it is
supposed to be stable against collusion strategies. The fluctu-
ation may come from the parameters for encoding codewords
and the threshold calculated by the rare event simulator.

It is noticed from the results that the worst strategy is
“minority” or “WCA” under this condition. Because some
universal detectors neglect the “minority” strategy, the attack
happens to become the worst case. It is remarkable that the
universal detector proposed by Laarhoven [8] is defeated by
the “minority” attack in a sense that the performance is below
the symmetric scoring function. From the table, it can be said
that the Meerwald’s and Desoubeaux’s methods are superior
because the worst score is the maximum among these meth-
ods and is almost coincident with the MAP method. For the

1We extracted it from the source code downloaded from
http://www.irisa.fr/texmex/people/furon/fp.zip
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Table 1. Sum of detected colluders for 2 ≤ c ≤ 10, where the values are at most 54 =
∑10

c=2 c and the values represented by
bold font are the worst case.

(a) L = 1024
majority minority coin-flip all-0 all-1 interleave WCA total

symmetric [3] 7.16 6.32 6.75 6.73 6.72 6.93 6.72 47.33
MAP 21.26 53.70 9.37 30.30 30.62 9.94 8.65 163.84
Oosterwijk [5] 17.17 8.19 7.81 7.87 7.76 8.62 7.45 64.87
Laarhoven [8] 16.54 5.82 7.80 7.85 7.76 9.96 7.77 63.50
Meerwald [9] 9.83 11.11 9.00 9.08 9.02 8.73 8.64 65.41
Desoubeaux [10] 9.76 10.90 9.01 9.08 9.01 8.68 8.64 65.08
Bias Equalizer [6] 21.14 6.69 7.72 18.58 18.65 9.70 7.69 90.17
Proposed 21.14 32.72 7.70 24.65 24.76 9.70 7.39 128.06

(b) L = 2048
majority minority coin-flip all-0 all-1 interleave WCA total

symmetric [3] 14.65 13.39 13.88 13.91 13.94 14.33 14.05 98.15
MAP 45.33 54.00 23.16 53.83 53.85 21.88 17.97 270.03
Oosterwijk [5] 36.84 19.43 17.47 17.30 17.44 20.06 15.89 144.43
Laarhoven [8] 35.32 12.49 16.12 15.98 16.10 21.91 16.62 134.54
Meerwald [9] 18.89 23.07 20.32 20.16 20.18 18.70 17.97 139.29
Desoubeaux [10] 18.74 22.91 20.08 19.93 19.96 19.10 17.95 138.67
Bias Equalizer [6] 45.09 15.02 15.71 43.60 43.57 21.40 16.45 200.84
Proposed 45.09 53.82 19.18 52.40 52.37 21.40 16.39 260.65
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Fig. 1. Comparison of the worst case when L = 2048.

comparison, the number of detected colluders versus the num-
ber of colluders is depicted in Fig.1 when each worst attack
is performed for each scoring function. It is observed that
the performance of Meerwald’s and Desoubeaux’s methods
are very close to that of MAP method while the Laarhoven’s
method becomes lower than the symmetric scoring function.

From a different point of view, the bias equalizer and the
proposed method show the better total balance against the
collusion tolerance. Especially for the proposed method, the

total sum is very close to the optimal (MAP) detector when
L = 2048. As for the “minority”, “all-0”, and “all-1” strate-
gies, it is remarkable that the proposed method is much bet-
ter than the others. Therefore, the advantage of the proposed
method is the total balance of collusion tolerance for some
possible collusion strategies.

6. CONCLUSION

In this paper, we studied the characteristic of scoring func-
tions and experimentally evaluated their performance. If the
estimation of collusion strategies and the number of colluders
is failed for the MAP detector, the degradation of the perfor-
mance is not negligible. Hence, the accurate estimation of c
and θc is essential.

Among some universal detectors, we discovered that the
total performance of the bias equalizer is better than the oth-
ers. The proposed method classifies collusion strategies using
two thresholds T † and T ‡ into three types, and customizes
the bias equalizer. Though the proposed method estimate the
attack strategy from the observation of a pirated codeword,
the total performance against some typical collusion strate-
gies are much better than the conventional universal detec-
tors. One of our future works is to investigate the theoretical
analysis for the bias equalizer.
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[5] J. J. Oosterwijk, B. Škorić, and J. Doumen, “A capacity-
achieving simple decoder for bias-based traitor tracing
schemes,” IEEE Trans. Inform. Theory, vol. 61, no. 7,
pp. 3882–3900, 2015.

[6] M. Kuribayashi, “Bias equalizer for binary probabilistic
fingerprinting codes,” in IH 2012. 2012, vol. 7692 of
LNCS, pp. 269–283, Springer, Heidelberg.

[7] K. Nuida, S. Fujitu, M. Hagiwara, T. Kitagawa,
H. Watanabe, K. Ogawa, and H. Imai, “An improve-
ment of discrete Tardos fingerprinting codes,” Designs,
Codes and Cryptography, vol. 52, no. 3, pp. 339–362,
2009.

[8] T Laarhoven, “Capacities and capacity-achieving de-
coders for various fingerprinting games,” in Proc.
IH&MMSec2014, 2014, pp. 123–134.

[9] P. Meerwald and T. Furon, “Towards practical joint de-
coding of binary Tardos fingerprinting codes,” IEEE
Trans. Inform. Forensics and Security, vol. 7, no. 4, pp.
1168–1180, 2012.

[10] M. Desoubeaux, C. Herzet, W. Puech, and G. Le
Guelvouit, “Enhanced blind decoding of Tardos codes
with new MAP-based functions,” in Proc. MMSP, 2013,
pp. 283–288.

2043


