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ABSTRACT

In this paper, we compare two methods that can be used by the anti-
counterfeiting industry to protect physical objects, which are either
based on an object’s natural randomness or on artificial randomness
embedded on the object. We show that the considered verification
architectures rely either on a comparison between an enrolled fin-
gerprint and an extracted one or between a tag and a fingerprint. We
compare these setups from detection-theoretic perspectives for both
types of architectures. Authentication performance using false and
miss error probabilities of the two systems are analysed and then
compared using two practical setups. We highlight the advantages
and limitations of each architecture. These theoretical results derived
for binary fingerprints are useful to construct and optimise practical
methods and to help select the appropriate architecture.

1. INTRODUCTION

Anti-counterfeiting of physical objects based on digital solutions has
attracted a lot of attention in the last years. This interest is caused
by the urgency for technologies to deal with modern counterfeiting,
which implies having access to easy, fast, reliable and user-friendly
verification of objects authenticity. Moreover, objects authentication
on consumer mobile phones de-facto becomes a standard solution
for brand protection. In this respect, there is significant interest in
cheap and simple secure methods, which are suitable for protection
of various objects such as pharmaceutical products (including both
drugs and its packaging), cosmetics, food, luxury goods, spare parts,
as well as medical equipment, components and implants.

Recent technologies that address the above demands are based
on physical uncloneable properties, a.k.a. physical uncloneable fea-
tures (PUF), that are easy to verify but difficult to clone, generally
referred to as a randomness. As a matter of fact, optically visible
microscopic features which exhibit random features are of special
interest for mobile verification since the advent of high definition of
modern imaging sensors.

Depending on the origin of randomness the anticounterfeting
technologies can be divided into natural randomness, when the sys-
tem exploits the randomness inherently created by nature, and artifi-
cial randomness, when the randomness is created on purpose. Natu-
ral randomness systems typically use object surface images such as
shown in Figure 1a whereas artificial randomness systems are based
on various uncontrolled effects occurring during marking (printing,
embossing, laser engraving, etc.) of random-like structures such as
graphical codes (GC) as shown in Figures 1b-1c.

Several papers address the practical and theoretical performance
and security of natural randomness [1, 2] and artificial randomness
[3–7] systems. However, to our best knowledge, there is little if
no work that compares the theoretical performance of these systems
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Fig. 1. Example of natural randomness (a) scanned paper fibbers at
800 dpi; and artificial randomness: (b) original digital tag represent-
ing a GC, (c) GC printed and scanned at 600dpi.

using the same assumptions behind the statistical models of random-
ness and acquisition/clonning processes. Therefore, the goal of this
paper is to compare the two systems and to analyse the potential
advantages of each system.

The paper is organised as follows. The problem formulation as
well as the statistical models behind the natural randomness and ar-
tificial randomness systems are introduced in Section 2, and section
3 summarises the main detection-theoretic results. The comparison
between the two practical setups is given in Section 4.

Notation. We use capital letters to denote scalar random
variables X , bold capital letters to denote vector random vari-
ables X, corresponding small letters x and x to denote the real-
izations of scalar and vector random variables, respectively, i.e.,
x = (x1, x2, ..., xN )T . We use X ∼ p(x) to indicate that a random
variable X follows pX(x). The sign ∗ denotes the convolution of
probabilities p ∗ q = p(1− q) + q(1− p).

2. PROBLEM FORMULATION: STATISTICAL MODELS

We present here the models associated with authentication using ei-
ther natural or artificial randomness.

The block diagram for systems based on natural randomness is
shown in Figure 2. At the enrollment stage, the microstructure of ob-
ject o corresponding to object index w ∈ {1, 2, · · · ,M} is acquired
by a device (e.g. a camera) resulting in the image x(w) ∈ RN
and the extracted fingerprint fx(w) ∈ {0, 1}n which is stored in
the database for future authentication. The helper data are given in
the form of a tag w pointing to the fingerprint fx(w) stored in the
database. In this paper, we consider only helper data in a form of a
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pointer to the concerned fingerprint. However, other forms of helper
data encoding developed in biometric applications are possible and
the reader is referred to [8, 9] for more details.

The authentication consists in: (i) acquisition of an object mi-
crostructure by the acquisition device resulting in image y, (ii) com-
putation of binary fy ∈ {0, 1}n or soft fy ∈ Rn fingerprint and
(iii) making a binary decision by comparing fy to fx(w). Because
of this last step, we will refer to these systems as fingerprint-to-
fingerprint (F2F) architectures.

We will assume that the F2F setup can be modeled as mem-
oryless source and the acquisitions are modeled by memoryless
channels. The authentication model can be represented by a chain
in the form of a probabilistic graphical model Fx ← X ←
O → Y → Fy or by the joint distribution p(fx, x, o, y, fy) =
p(o)p(x, y|o)p(fx|x)p(fy|y) with p(x, y|o) = p(x|o)p(y|o).

The block diagram of systems based on artificial randomness is
shown in Figure 3. At the enrollment stage, the object tag m(w) ∈
{0, 1}n in a form of any random-like modality is generated based
on the index w and reproduced on the object surface resulting in ob-
ject o(w). In the general case, the tag w is known at the verification
stage too, it can be added to the object at the enrollment either as
a standalone index encoded in any machine readable form or inte-
grated directly into the object tag m(w). Additionally, the object
tag m(w) can be generated pseudo-randomly from w or coded from
w using error correction codes 1.

The authentication process consists in (i) the acquisition of the
object’s microstructure by the capturing device resulting in image y,
(ii) extraction of the tag estimate fy ∈ {0, 1}n or soft fy ∈ Rn and
(iii) making a binary decision by comparing fy to m(w), or decoding
ŵ based on fy and comparing the obtained estimate ŵ to the claimed
object tag w. We will refer to such artificial randomness systems as
tag-to-fingerprint (T2F) architectures.

We assume that tag statistics are governed by a Bernoulli distri-
bution with parameter Pr{Mi = 1} = θm, 1 ≤ i ≤ n. The above
T2F setup can be represented by a Markov chain in the form of a
probabilistic graphical model M → O → Y → Fy or by the joint
distribution p(m, o, y, fy) = p(m)p(o|m)p(y|o)p(fy|y).

Note that the physical protection based on the T2F architecture is
based on a fact that any attempt of counterfeiter to clone the original
object tag will lead to the additional distortions between the digital
tag m(w) and its cloned version 2, that can be detected using an
appropriate test (see section 3.2).

3. DETECTION-THEORETIC ANALYSIS

3.1. Statistical models under consideration

This analysis relies on a set of assumptions that can be summarised
as follows: (a) the pmf of sources and channels are known and the
sources are assumed to be memoryless and binary and the channels
to be binary symmetric channel (BSC) models; (b) the synchroniza-
tion between all enrolled sequences and probe is perfect.

F2F setup (Figure 4a): We consider a hypothetical model of
natural randomness generated according to a Bernoulli distribution

1The object tag can additionally be encrypted to prevent the reverse engi-
neering attack.

2Several studies [5,10,11] investigate a possibility to produce high quality
clones from multiple scans of the same GC and combination of various image
processing techniques targeting an accurate estimation of object tag.
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Fig. 2. Block diagram of natural randomness system: Fingerprint-
to-Fingerprint (F2F) architecture and corresponding graphical prob-
abilistic model.
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Fig. 3. Block diagram of artificial randomness system: Tag-to-
Fingerprint (T2F) architecture and corresponding graphical proba-
bilistic model.

with parameter θo = Pr[Foi = 1], 1 ≤ i ≤ n. Therefore, the statis-
tical model of the source governing all samples is Fo ∼ Bern(θo)3.
Accordingly, we assume that all corresponding components of the
model representing enrolled data Fx, probe Fy for the authentic ob-
ject and F ′y for the fake object, are binary, i.e., with the alphabet
{0, 1}.

The enrollment channel is assumed to be represented by an ad-
ditive modulo-2 channel, i.e., Fo is XORed with independent enroll-
ment noise FZe resulting into enrolled data Fx:

Fx = Fo ⊕ FZe ,

where the noise FZe ∼ Bern(Pbe) and the enrolled fingerprint
Fx ∼ Bern(θo ∗ Pbe). This model also represents the BSC with
the cross-over probability Pbe .

The authentic verification channel is also assumed to be an ad-
ditive modulo-2 channel with:

Fy = Fo ⊕ FZv ,

where FZv ∼ Bern(Pbv ) and Fy ∼ Bern(θo ∗ Pbv ).
The opponent verification channel corresponds to the case when

the opponent tries to clone the original Fo and since the process is
noisy:

F ′y = Fo ⊕ FZc ⊕ FZv ,

3The statistics of extracted binary fingerprint are determined by the pa-
rameter θo. In th general case, some data independent or data-dependent
(learned) transform can be applied to the image x(w) with a following bina-
rization to ensure the desirable value θo [12, 13], for example θo = 0.5.
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Fig. 4. Binary statistical models used for the statistical analysis in the legitimate and opponent channels: (a) F2F setup with the model
Fx ← Fo → Fy and (b) T2F setup with the model M → Fo → Fy.

where FZc ∼ Bern(Pbc) models to cloning channel and F ′y ∼
Bern(θo ∗ Pbc ∗ Pbv ).

T2F setup (Figure 4b): The statistical model of the source (the
mark here) is also assumed to be generated as M(w) ∈ {0, 1}n with
Pr[Mi = 1] = θm, i.e., it is generated from the Bernoulli pmf as
Mi ∼ Bern(θm). The marking process is modeled as a BSC with
transition probability Pr[Oi 6= Mi] = Pbp . Thus the marked object
is modeled as: Foi ∼ Bern(θm ∗ Pbp). The reproduction process
can be equivalently represented by the additive modulo-2 channel:

Fo =M ⊕ FZp ,

where FZp ∼ Bern(Pbp) stands for the marking noise.
The authentic verification channel is also memoryless where for

each element:
Fy =M ⊕ FZp ⊕ FZv ,

where FZv ∼ Bern(Pbv ) and Fy ∼ Bern(θm ∗ Pbp ∗ Pbv ).
The verification channel for the opponent is represented by:

F ′y =M ⊕ FZp ⊕ FZc ⊕ FZv ,

where FZc ∼ Bern(Pbc) model the copying process and F ′y ∼
Bern(θm ∗ Pbp ∗ Pbc ∗ Pbv ).

3.2. Hypothesis testing

We measure the system performance using probability of miss PM

and probability of false acceptance PFA. Probability of miss PM cor-
responds to the error event when authentic object with tag w is re-
jected by the authentication system. Probability of false acceptance
PFA reflects a probability of falsely accepting any fake item as an
authentic one with index w.

It should be pointed out that a fake object presented for authenti-
cation might be chosen blindly without any reference to the original
object with tag w. However, a fake might also be designed more
meticulously using any available information about object o(w) or
its features fx(w). We refer to this case as an informed attack. The
corresponding probability of false acceptance under the informed at-
tack is denoted probability of successful attack PSA. An informed
attack is more dangerous than a blind attack since it might generate
a fake object whose features are considerably closer to the features
of an authentic object. For this reason, we focus on informed attacks
here.

We consider this authentication problem as a binary hypothe-
sis testing with hypothesis HFw , representing the hypothesis that the
presented object is not authentic (fake), and Hw its authentic coun-
terpart. Moreover, we assume the worst case attack, i.e., an informed

attack where the object presented for authentication under hypothe-
sis HFw is reproduced from an authentic object. The distributions
under the corresponding hypothesis are [2]:{

HFw :p(fy|fx(w),HFw) = P ′b
dH (w)

(1− P ′b)n−dH (w),

Hw :p(fy|fx(w),Hw) = P
dH (w)
b (1− Pb)n−dH (w),

(1)

where dH(w) = dH(fy, fx(w)). Probability of bit error for the hy-
pothesis HFw characterises the opponent channel P ′b = Pbe ∗ Pbc ∗
Pbv for F2F, and P ′b = Pbp ∗ Pbc ∗ Pbv for T2F systems. Hypothe-
sisHw corresponds to the case of legitimate channel and is equal to
Pb = Pbe ∗Pbv for F2F and Pb = Pbp ∗Pbv for T2F systems. Note
that for blind attacks, P ′b = 0.5 in both cases. We also assume that
the fingerprinting scheme in the case of F2F systems is designed to
maximise the entropy of the source, i.e., such that θ0 = 0.5 for F2F4

and θm = 0.5 for the T2F.
The authentication test is performed based on rule dH(fy, fx(w)) ≤

γn, where γ is a threshold relying on PSA and PM.
In this paper, we follow the approach proposed in [2] that consid-

ered the performance of authentication systems under the informed
attacks. The probability of successful attack is defined as [2]:

PSA(γ)=Pr{DH(w) ≤ γn|HFw}

=

bγnc∑
dH=0

(
n

dH

)
P ′b

dH (1− P ′b)
n−dH , (2)

and the probability of miss is [2]:

PM(γ)=Pr{DH(w) > γn|Hw}

=

n∑
dH=dγne+1

(
n

dH

)
Pb
dH (1− Pb)n−dH . (3)

4. COMPARISON BETWEEN T2F AND F2F SCHEMES

4.1. Setups and assumptions

The considered models are generic and allow considering different
relationships between the parameters of enrollment and verification
for both the legitimate user and the opponent. We consider here a
conservative scenario assuming that the counterfeiter uses the same
marking and acquisition equipment as a legitimate user, as well as

4This can be achieved even for correlated input mages by randomly pro-
jecting the input image and binary quantizing the resulting projections as
shown in [14].

2031



Object Extraction

Extraction Copy Extraction

EP

EP EPCP

EP

E C EP P P* *

Extraction

EP

EP

  
Fy

   
′Fy

  Fx

 Test

 Fo

  
′Fo

(a) F2F setup.

Tag

 Test

PP

Pr int Extraction

Extraction Pr int Extraction

EP

EP EPPP

P EP P*

P E P EP P P P* * *

 M   
Fy

   
′Fy

 Fo

  
′Fo

(b) T2F setup.

Fig. 5. Simplified setups under analysis: (a) F2F and (b) T2F.

the same fingerprinting extraction algorithms. Other possible scenar-
ios could include: (a) High-Quality clones, when the opponent has
the high quality scanning-reproduction equipment w.r.t. the genuine
enrollment, and (b) Low-Quality clones, when the situation is an in-
verse one. More particularly, we assume that: (a) Pbe = Pbv = PE
to be a generic extraction probability of error, (b) Pbc = PE ∗ PC
with PC to be a probability of reproduction in F2F systems and (c)
Pbc = PE ∗PP with PP to be a probability of reproduction/printing
in T2F systems. We also set θ0 = θm = 0.5 for the above discussed
reasons. The setups for the F2F and T2F authentication methods are
depicted in Figures 5a and 5b, respectively.

4.2. Performance of authentication systems

We compute PSA and PM according to (2) and (3) with: (a) F2F
parameters Pb = PE ∗ PE and P ′b = PE ∗ PE ∗ PC ∗ PE and (b)
T2F parameters Pb = PP ∗ PE and P ′b = PP ∗ PE ∗ PP ∗ PE .

The probabilities PM(γ) and PSA(γ) depend on the selection of
threshold γ. We simulated the equal-error-rate strategy popular in
biometrics, i.e., PM = PSA , PEER shown in Figure 6a assuming
PP = PC = 0.1 and n = 500. We have observed the same behavior
of plots withe threshold γ selection under the Neyman-Pearson (NP)
strategy for the bounded PSA(γ)

5 . For both strategies of threshold γ
selection, PEER for the F2F systems is lower of those of T2F systems
whenever PE ≤ PP . For both schemes there may exist an optimal
extraction value PE that minimizes PEER. Note that the possible
existence of an optimal value is due to the fact that: for low PE , it is
easier for the opponent to reproduce an accurate copy; for large PE ,
the original and fake fingerprint tend to be equally noisy and are not
distinct.

Finally, Figure 6b summarises the behavior of PEER as a function
of PP = PC for PE = 0.1. In this scenario we assume that counter-
feiting devices are comparable. Accordingly, we set the extraction
error to a given value PE = 0.1. It is interesting to note that the
behaviour of these two schemes w.r.t. the duplication error is com-
pletely different. The authentication performance decreases w.r.t.
PP (after reaching a maximum for PE) for T2F setup but increases
w.r.t PC for F2F setup. The first phenomenon can be explained by
the fact that if a printing device is highly noisy, it is difficult to dis-
tinguish between two equally noisy fingerprints. The second phe-
nomenon can be explained by the fact that only the opponent has to
use a duplication device for the F2F scheme which makes the dis-
crimination between the fake object and the original one growing
w.r.t the duplication noise. It is interesting to point out that in this
case the F2F has an advantage over the T2F systems due to the in-
dependence of the legitimate channel from these parameters which
only determine the opponent channel.

5These results are not shown due to the paper length restrictions.
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Fig. 6. Comparison of performance of F2F and T2F systems.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented and compared the F2F and T2F sys-
tems from the detection-theoretic perspectives. These systems can
model a large variety of practical scenarios used for object identi-
fication and authentication. For conservative scenarios, we demon-
strate that F2F authentication systems have lower equal error rate
than T2F systems for large reproduction errors. At the same time,
we have found that T2F systems may reach a minimum for a given
parameters of extraction and printing. In our future research, we
intend to consider the impact of security and information theoretic
oriented constraints such as the unclonability of the fingerprint, the
information leakage of the secret parameter in the T2F setup or the
identification capacity associated to the authentification system.
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