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ABSTRACT
In this paper we propose a technique to improve the accuracy of lat-
eral chromatic aberration (LCA) based detection of copy-paste im-
age forgeries. We propose a statistical model of the error between lo-
cal estimates of LCA displacement vectors and those predicted by a
global model. Using this statistical model, we formulate forgery de-
tection as a hypothesis testing problem, and derive the optimal detec-
tion statistic for performing LCA-based forgery detection. Through
a series of experiments, we demonstrate that our proposed technique
outperforms existing approaches for conducting LCA-based forgery
detection.

Index Terms— Digital Forensics, Copy Paste Forgery Detec-
tion, Lateral Chromatic Aberration

1. INTRODUCTION

Many facets of human society, such as courts of law and news agen-
cies, rely upon authentic information and increasingly so upon au-
thentic digital images. With the growing ability of digital image
forgeries to deceive human perception, computational methods to
determine if an image has been altered are becoming important. As
a result, researchers have developed a variety of multimedia forensic
techniques [1].

Two types of forgeries which are particularly important to detect
are copy-paste forgeries, where image content is cut from one im-
age and pasted into another, and copy-move forgeries, where image
content is pasted to another location within the same image. Pre-
vious research has developed techniques to detect copy-paste forg-
eries by finding localized evidence of manipulation, such as traces
of resampling [2, 3], JPEG compression [4–6], contrast enhance-
ment [7], and sensor noise [8]. Techniques to detect copy-move
forgeries have also been developed, which work by finding dupli-
cate image blocks [9, 10], and by matching SIFT features [11, 12].

Johnson and Farid introduced the idea of using lateral chromatic
aberration (LCA) as a feature of digital images to expose both copy-
paste and copy-move forgeries [13]. LCA is a phenomenon of op-
tical imaging systems that arises from a lens’s inability to focus all
wavelengths of light to a common focal point. The effect of LCA can
be described by a vector of displacement between the focus locations
of two color components of light that share a common source. Var-
ious techniques have been developed to measure and characterize
the effects of LCA in digital images [13–15]. Johnson and Farid’s
proposed detection method works by searching for inconsistency in
the angles of LCA displacement vectors, which is evident in forged
images. Other work has shown that LCA can be used to detect forg-
eries in digital images [16], as well as for camera model identifica-
tion [17]. Additionally, research has shown that artificial LCA can
be induced in an image to avoid forgery detection [18].

While the heuristic forgery detection method proposed by John-
son and Farid has been shown capable of detecting image forgeries

[13], it has several shortcomings. First, in a scenario where image
content is copy-moved radially outwards from the image optical cen-
ter, LCA displacement in the forged region will be inconsistent in
magnitude only, but not angle. Such a scenario will not be detected
by an angle based detection metric. Second, angle-based metrics can
not be determined in forged regions cut from or near an image optical
center. As a result, no decision can be rendered by an angle-based
detector. This is because measurements of LCA displacement near
the optical center have zero-magnitude, and thus an undefined angle.

In this paper, we propose a new LCA-based forgery detection
technique to address the above shortcomings. To accomplish this, we
first develop a new stochastic model that describes inconsistency
between local observations and global predictions of LCA in both
forged and unaltered images. Using this model, we frame forgery
detection as a hypothesis test from which we derive the optimal deci-
sion metric. We perform a series of experiments to test the efficacy of
this proposed decision metric, and compare to the method suggested
by Johnson and Farid. The results of these experiments demonstrate
that our proposed metric addresses the shortcomings outlined above,
and outperforms existing techniques in all tested scenarios.

2. BACKGROUND

As light passes through a lens, it is focused onto a camera’s optical
sensor through refraction. The refractive index of glass, however,
is dependent upon the wavelength of the incident light. This causes
different color components of light originating from the same source
to be focused onto different locations on the sensor. A diagram of
this phenomenon, known as lateral chromatic aberration (LCA), is
shown in Fig. 1.

The effects of LCA are characterized by the mapping of a point
r = (rx, ry)T in a reference color channel of an image to the lo-
cation of the corresponding point c = (cx, cy)T in a comparison
color channel. Johnson and Farid proposed the following parametric
model of this mapping

c = α(r− ζ) + ζ (1)

where α is a first order expansion coefficient, and ζ = (ζx, ζy)T is
the location of the image’s optical center. While others have shown
higher order LCA models to be useful [15], we have found a first
order model to be sufficient for forgery detection.

The effect of LCA at location r is also described by a displace-
ment vector d. The LCA displacement vector is defined as the dif-
ference between r and c, i.e. d = c− r. By using the model (1) to
determine c, the LCA displacement vector is given by the equation

d = c− r = α(r− ζ) + ζ − r. (2)

An example of an image’s LCA displacement vector field is shown
in the left of Fig. 2. For the model (1), LCA displacements point
radially outward (inward) from the optical center for expansion co-
efficients greater (less) than 1.
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Fig. 1. Lateral chromatic aberration (LCA). The symbol d denotes
LCA displacement.

Fig. 2. Left: Lateral chromatic aberration (LCA) displacement vec-
tor field for an authentic image. Right: LCA displacement vector
field for a copy-paste forgery, with pasted LCA in red. Displace-
ment vectors are scaled 200X.

2.1. Lateral Chromatic Aberration Estimation

In practice, the LCA model parameters α and ζ are typically un-
known and must be estimated. Gloe et al. provide a technique to
estimate the model parameters [14]. Their method operates by ob-
taining local estimates of the LCA displacement vector d̂ at several
corner points located throughout an image. The global LCA model
parameters are then identified by performing a least-squares fit of the
estimated displacement vectors to the model (2) using an iterative
Gauss-Newton method. Local estimates of the LCA displacement
vector d̂ are obtained by searching for a W × W block C in the
comparison channel that maximizes similarity with an equivalently
sized block R in the reference channel, such that

d̂ = arg max
(m,n)∈{−∆,...,∆}

S(R(x, y),C(x+m, y + n)) (3)

where the similarity S(·) is measured using the correlation coeffi-
cient, and (x, y) denote the horizontal and vertical location of a cor-
ner point, about which the blocks are centered. To enable a search
over fractional pixel displacements, both blocks are upsampled by
a factor of u. This search is performed exhaustively over a set of
displacements (m,n) between −∆ and ∆.

2.2. Forgery Detection

In a copy-paste forgery, a forger moves image content from one lo-
cation to another. Often, the local LCA of the copied region does
not resemble the LCA original to the paste location. This causes a
mismatch between the local LCA in the forged region and the global
LCA model of the image. When looking at the LCA displacement
field of a copy-paste forgery, the falsified region becomes readily
apparent as shown on the right side of Fig. 2.

Johnson and Farid proposed using the absolute angular differ-
ence between a LCA displacement determined locally to a displace-
ment determined by the global model (2) as a forgery detection fea-
ture [13]. This angular difference is averaged over observations in
a region and compared to a threshold, where local observations that
result in a mean angular error greater than a threshold are considered
to be from a falsified region.

Fig. 3. Histogram of and Gaussian fit of nx from 700 test points of
an unaltered image taken by a Sony Cybershot DSCV1.

3. ERROR MODEL

While the use of an angular-difference metric between local and
global LCA displacement has been shown capable of detecting im-
age forgeries, we find this metric deficient in two regards. First,
an angular-difference metric is unable to resolve magnitude differ-
ences between local and global LCA displacements. This limitation
is highlighted in copy-move scenarios when image content is moved
radially outward from the optical center; local displacement observa-
tions will differ from global in magnitude but not angle. Second, an
angular-difference metric is not measurable in regions copied from
near the image optical center. Since the LCA effect is small near the
optical center, local displacement observations in that region will
have no magnitude and thus no measurable angle.

To address the above concerns, we propose a new detection met-
ric that is able to resolve magnitude differences and is measurable
when local displacements are small. This metric is derived from a
noise model that captures a scaled, Cartesian discrepancy between
local and global LCA displacements.

Local estimates of LCA displacement d̂ are viewed as noisy ob-
servations of those determined by a global model d. We model ob-
servational noise n = (nx, ny)T as an additive term upon a refer-
ence location in (1):

d̂ = α(r + n− ζ) + ζ − r (4)

The noise term n captures the disagreement between local observa-
tions of LCA displacement and those predicted by the global model.
Fig. 3 shows a histogram of the horizontal component of n in a sin-
gle image. We model n as independent and identically distributed
Gaussian.

In a forged region of an image, local observations will contain
a constant offset in addition to observational noise. This offset is
modeled as an additive term about a reference location in (1):

d̂ = α(r + n + δ − ζ) + ζ − r (5)

The offset term δ = (δx, δy)T is called the forgery offset, which is
a result of the mismatch between LCA in the original and forged
regions.

We define an error term that captures observational noise in an
authentic region, as well as the forgery bias in a forged image re-
gion. This error term is called model discrepancy. We define model
discrepancy e = (ex, ey)T as:

e , α−1(d̂− d) (6)

Solving for e in an authentic image region yields

e = α−1 ((α(r + n− ζ) + ζ)− (α(r− ζ) + ζ))

= n (7)
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and in a forged region

e = α−1 ((α(r + n + δ − ζ) + ζ)− (α(r− ζ) + ζ))

= n + δ (8)

Observe that the model discrepancy (6) describes inconsistency
in local and global displacement, much like angular error from Sec.
2.2. Unlike the angular error metric, this form is practical when the
local displacement has a small magnitude. Additionally, the error
model is able to discern differences between the magnitudes of local
and global displacement.

4. FORGERY DETECTION

From (7) and (8), we formulate a hypothesis test to differentiate be-
tween authentic and forged image regions. For a particular region
of interest within an image, we define H0 as the hypothesis that the
image region is unaltered and H1 as the hypothesis that the region
has been falsified through copy-paste forgery.

H0 : e ∼ N (µ0,Σ)

H1 : e ∼ N (µ0 + δ,Σ)
(9)

Here µ0 and Σ are the mean and covariance of observational noise in
the image. The following equation specifies the probability density
of a sequence {e1, e2, . . . , eN} of N independent and identically
distributed observations of m dimensional model discrepancy.

p(e1, . . . , eN |µ,Σ)

=
|Σ|−N/2

2πNm/2
exp

{
−1

2

N∑
i=1

(ei − µ)TΣ−1(ei − µ)

}
(10)

From the hypotheses in (9) and density in (10), we construct a log-
likelihood ratio test to determine whether a sequence of error obser-
vations is inauthentic.

log

(
p(e1, . . . , eN |µ0 + δ,Σ)

p(e1, . . . , eN |µ0,Σ)

)
= −1

2

N∑
i=1

(ei − µ0 − δ)TΣ−1(ei − µ0 − δ)

+
1

2

N∑
i=1

(ei − µ0)TΣ−1(ei − µ0)

(11)

Observe that the terms within the summations on the second and
third lines of (11) are Euclidean-squared distances of ei to µ0 + δ
and µ0, respectively, projected onto the error-space defined by Σ−1.
Thus, the likelihood ratio test can be thought of as comparing the ag-
gregate distances of error observations to the two distribution means.

Further algebraic reduction of (11) yields a simplified form of
the optimal detector:

(ē− µ0)T Σ−1δ
H0

≶
H1

τ (12)

where ē is the sample average of ei, and τ is a decision threshold.
In most practical forensic scenarios the forgery offset δ is un-

known, since information regarding the source forgery content is not
available. In these scenarios the optimal decision feature (12) can-
not be computed explicitly. Instead, we form a maximum-likelihood
estimate of the forgery offset δ̂. Since error in a forged region is dis-
tributed Gaussian with mean µ0 + δ, the forgery offset is estimated
by

δ̂ =
1

N

N∑
i=1

ei − µ0 = ē− µ0 (13)

Substituting δ̂ for δ in (12) yields:

(ē− µ0)T Σ−1 (ē− µ0)
H0

≶
H1

τ (14)

Since Σ and µ0 are often unknown apriori, they must also be
estimated. We follow the convention set by Johnson and Farid, and
assume the forgery be sufficiently small such that it does not intro-
duce bias to global estimates [13]. Thus we estimate Σ and µ0 from
all model discrepancy observations within an image.

5. EXPERIMENTAL RESULTS

We conducted three experiments to test the efficacy of the proposed
detection technique. Test forgery images were created by splicing a
512x512 block of image content from one image and inserting into
another. For the cameras whose abbreviated names are listed in Ta-
ble 1, a 512x512 block is 1.7%, 2.2% and 3.3% of a CPS, SAN and
CER image, respectively.

Local LCA measurements were obtained at corner points iden-
tified using the Harris corner point detector [20]. We used the green
channel as a reference channel with red and blue as comparison
channels, forming four dimensional displacement vectors. For local
LCA estimation we used an upsample factor of u = 5, maximum
displacement of ∆ = 3, and window size of W = 64 (see Sec. 2.1).

The detection metric (14) was then calculated in regions of in-
terest in forged and authentic images. We defined a region of interest
in each forged image to be the location of the pasted block. In an au-
thentic image we defined multiple regions of interest the same size
as the forgery block, which span the image with 50% overlap. This
methodology was adopted to test the ability of the detection metric to
distinguish between a completely forged image block and unaltered
image blocks.

The average angular error was also calculated in each region
of interest. For both detection metrics, we required N ≥ 10 corner
points in the region of interest in order to make a decision. This
ensures that homogenous regions (i.e. sky) are not included, as they
are generally not suitable for this method of forgery detection.

5.1. Copy-Paste Forgery Detection
In our first experiment, we cut image content from one image, which
we refer to as the source image, and pasted it into a different image
called the destination image. We chose one of the three camera mod-
els listed in Table 1 as a source camera model and another as the des-
tination camera model. To make a forged image, we chose a source
image uniformly at random among the authentic images belonging to
the source camera model, and a destination image uniformly at ran-
dom from those images belonging to the destination camera model.
A 512x512 block was then cut from the source image and pasted
into the destination image, with the cut and paste locations both cho-
sen uniformly at random. In all, 9 test groups were formed from the
possible permutations of source and destination models, with 1000
forged images in each.

Fig. 4 shows the receiver operating characteristics (ROC) of
the proposed and angular-error detectors for the 9 test groups. We
see from these ROC curves that the proposed detector method out-
performs the angular error method. While the ROC curves appear
comparable in the case when the destination image is from the CPS
camera, at low false alarm rates there is noticeable disparity between
detection methods, as highlighted in Table 2.
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Fig. 4. From left to right are the receiver operating characteristic for forgery detection with CER, SAN and CPS cameras as the destination
image. For each source camera two line-plots are shown; solid for the proposed detection ROC, and dashed for the angular-error ROC.

Table 1. Camera models used in experimental results

Camera model (ID) Image size No. images

Canon EOS Rebel T3i (CER) 3456x2304 199
Sony Alpha NEX5 (SAN) 4592x2576 239
Canon Powershot SX500IS (CPS) 4608x3456 206

Table 2. Differences in detection rates between proposed method
and angular error method at PFA = 0.01

Destination
CER SAN CPS

So
ur

ce CER 0.41 0.31 0.21
SAN 0.61 0.27 0.44
CPS 0.51 0.45 0.20

Table 2 shows the difference in detection rates between the pro-
posed and angular-difference metrics at a 1% false alarm rate. In all
cases, our proposed detection method outperforms the angular-error
metric (i.e. has a positive difference). At minimum, our proposed
detector improves the positive detection rate by 20 percentage points
in the CPS to CPS case. The proposed detector achieves highest ben-
efit in the SAN to CER case, improving the positive detection rate
by 61 percentage points.

5.2. Radial Forgery Experiment
In this experiment, we started with 199 unaltered images from CER.
In each authentic image, 9 copy blocks are defined at a distance
of 800 pixels from the image optical center. The first block is de-
fined 800 pixels to the right of the optical center. Subsequent blocks
are defined at increments of 22.5 degrees, clockwise, so that the 9th
block is defined at 800 pixels to the left of the optical center. Each
copy block is then moved 600 pixels inwards along the radius be-
tween the optical center and the copy block. After filtering out forg-
eries with less than 10 corner points in the copy region, 189 forgeries
were created and used for analysis of detection performance.

Fig. 5 shows that the receiver operating characteristic for the
proposed detection feature and angular error method. We observe
that the angular error decision rule achieves little better than random
chance in this scenario. At a false alarm rate of 0.05, the proposed
technique achieves a positive detection rate of 30 percent, whereas
the angular error method has 8 percent positive detection rate.

5.3. Undetectable Copy Area
It is important to note that in order for the angular error detection
method to render a decision, it must have local estimates d̂ with
non-zero magnitude. However, part of the image near the optical
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Fig. 5. The receiver operating characteristic for detection of copy-
move forgeries created radially using images from the CER camera.

center will not have an inherent LCA displacement large enough to
affect a non-zero estimate of d̂. Thus an image block copied from
near the image optical center will fail to be detected in a forgery with
the angular error method.

In order to estimate the area of the image where our proposed de-
tector can be used but an angular-difference detector cannot, we con-
ducted the following experiment. We started with an unaltered image
database described in Table 1. We then divided the images into 3000
non-overlapping square blocks, and determined the strongest corner
point in each box. Boxes lacking a sufficient corner point were dis-
counted from this test. Local LCA displacements were estimated at
each corner point with green as the reference channel, red and blue
as the comparison channels, and upsample factor u = 5. The num-
ber of blocks where both green-to-red and green-to-blue local LCA
displacement estimates were of zero magnitude were counted over
all images of one camera model. This number was divided by the
total number of blocks over all images of that camera model. This
ratio represents the percentage of the image area that has insufficient
LCA displacement magnitude to affect a non-zero local LCA dis-
placement estimate. We found that 11%, 25%, and 6% of image
area from the CER, CPS and SAN cameras had insufficient LCA
displacement magnitude, respectively.

6. CONCLUSION
In this paper, we propose a technique to improve the accuracy of
LCA-based forgery detection. The proposed technique is derived
from a statistical model of the error between local estimates of LCA
displacement vectors and those predicted by a global model. Using
this statistical model, we formulate forgery detection as a hypoth-
esis testing problem, and derive the optimal detection statistic for
performing LCA-based forgery detection. Through a series of ex-
periments, we demonstrate that our proposed technique outperforms
existing approaches for conducting LCA-based forgery detection.
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