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ABSTRACT

Recovering both camera motions and non-rigid 3D shapes
from 2D feature tracks is a challenging problem in computer
vision. Long-term, complex non-rigid shape variations in
real world videos further increase the difficulty for Non-rigid
structure-from-motion (NRSfM). Furthermore, there does
not exist a criterion to characterize the possibility in recov-
ering the non-rigid shapes and camera motions (i.e., how
easy or how difficult the problem could be). In this paper,
we first present an analysis to the “reconstructability” mea-
sure for NRSfM, where we show that 3D shape complexity
and camera motion complexity can be used to index the re-
constructability. We propose an iterative shape clustering
based method to NRSfM, which alternates between 3D shape
clustering and 3D shape reconstruction. Thus, the global
reconstructability has been improved and better reconstruc-
tion can be achieved. Experimental results on long-term,
complex non-rigid motion sequences show that our method
outperforms the current state-of-the-art methods by a margin.

Index Terms— Non-rigid structure-from-motion, shape
clustering, reconstructability, 3D reconstruction.

1. INTRODUCTION

Non-rigid Structure-from-Motion (NRSfM) aims at estimat-
ing both camera motions and 3D dynamic shapes from 2D
image measurements, which is central to dynamic scene un-
derstanding, motion capture and activity recognition. Despite
the recent progress [1] [2] [3], NRSfM still lags far behind its
rigid counterpart, which is well-developed and can be reliably
solved. This is mainly due to the difficulty in modeling real
world non-rigid variation [4] [5] [6] [7] [8] and difficulty in
the corresponding minimization problem [9].

NRSfM can be roughly categorized into two classes:
sparse methods and dense methods. Under sparse 3D recon-
struction, a global model is generally used to regularize the
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Fig. 1: Illustration of our method on the UMPM “Free” sequence.
The top row shows the result by PND [10] using a global model
while the bottom row shows the result by our method, where the
whole sequence is clustered into 3 sub-sequences. The dimension-
ality of the subspace (rank) is shown alongside the corresponding
results. Different colors are used to indicate the clustering result of
the frames. Through iterative shape clustering and 3D shape recon-
struction, we achieved an overall 3D reconstruction error as 0.2588
while the state-of-the-art method PND achieved 0.3887.

otherwise highly under-determined problem. Linear combi-
nation model [4] has been widely used to capture the low-
dimension structure of the 3D shapes. Following shape space
approaches [5] [11] [12] [3] represent the non-rigid variation
as a combination of basis shape variations. Meanwhile, the
trajectory space based methods [1] aims at reconstructing
each feature track’s 3D trajectory using a pre-defined tra-
jectory bases. The shape-trajectory approach [2] combines
the two models and formulates the problems as revealing
the trajectory of shape basis coefficients. Besides the linear
combination model, Lee et al. [10] proposed a Procrustean
Normal Distribution (PND) model, where the 3D shapes are
aligned and fit into a normal distribution. In sparse recon-
struction, the feature points are geometrically apart from each
other, thus no spatial regularization can be enforced.
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By contrast, dense NRSfM methods such as [13] [14]
[15] aims at achieving 3D reconstruction for each pixel in
the video sequence, where spatial constraint has been widely
used to regularize the problem. In this paper, we will focus on
sparse 3D reconstruction while the general principle proposed
here can be applied to dense case with light modification.

Despite its success in reconstructing simple non-rigid de-
formations, NRSfM is still far from real world applications.
Real world non-rigid reconstruction generally requires the
ability to handle long, complex non-rigid shape variations.
The long and complex motion not only increases the com-
putational complexity but also adds difficulty in modeling
various kinds of different motions (e.g., in motion capture, a
human can sit, stand, walk, bend and dance inside a video).
A complex non-rigid variation is hard to be correctly rep-
resented by a single subspace model or probabilistic model.
Zhu et al. [16] represented complex motion as lying in a
union of subspaces rather than sum of subspaces. However,
the solution involves a complex non-convex optimization.

Furthermore, there does not exist a criterion to character-
ize the possibility in recovering non-rigid shape and camera
motion given input video (i.e., how easy or how difficult the
problem could be). This is a typical “chicken and egg” prob-
lem. At one hand, if the camera motion and 3D shape have
been recovered, it is easy to define such a metric. At the other
hand, if such metric is available before reconstruction, we
can utilize the metric to design proper reconstruction meth-
ods. Park et al. [17] [18] looked into the theoretical aspect of
3D trajectory reconstruction and proposed a criterion called
“reconstructibility”, which measures the possibility and accu-
racy of reconstructing a 3D point from its 2D trajectory. This
“reconstructability” is only valid in the trajectory reconstruc-
tion problem, where the camera motion is available.

To pave the way for NRSfM in real world applications
and deal with long and complex motion in NRSfM, in this
paper, we extend the concept of “reconstructibility” from tra-
jectory reconstruction to the general NRSfM problem. Un-
der our formulation, reconstructibility is defined on the re-
covered 3D shapes. To utilize this property and improve the
reconstructibility in NRSfM, we propose an iterative method,
which alternatively clusters a long, complex sequence into
subsequences by using 3D shape similarity and reconstructs
each subseqeunce. In this way, each subsequence has a much
lower shape complexity and the global reconstructibility has
been improved. Extensive experimental results on long, com-
plex motion sequences show that our method outperforms the
current state-of-the-art NRSfM methods by a margin, thus
pushing the limit of NRSfM.

2. RECONSTRUCTABILITY FOR NRSFM

We consider a monocular camera observing a non-rigid shape.
We assume an affine camera model and eliminate the transla-
tion as in [4]. The image measurement wij = [uij , vij ]

T and

3D point Sij on the non-rigid shape are related by the camera
motion Ri as: wij = RiSij , where Ri ∈ R2×3 denotes the first
two rows of the i-th camera rotation. Using this representa-
tion, and stack all the F frames of measurements and all the
P points in matrix form, we reach:

W = RS, (1)

where R = blkdiag(R1, · · · , RF ) ∈ R2F×3F expresses the
camera motion matrix. Factorization based NRSfM aims at
factorizing the 2D measurement matrix W ∈ R2F×P as the
product of camera motion (projection) matrix R and a 3D non-
rigid shape matrix S ∈ R3F×P , such that W = RS.

To characterize the possibility in recovering the non-rigid
shape and camera motion given input feature tracks, we pro-
pose to analyze the camera motion and 3D shapes. In the
following paragraphs, we first review the reconstructability
proposed for trajectory reconstruction. Then we extend the
concept to general NRSfM and propose our reconstructabil-
ity evaluation based on 3D shape similarity.

Reconstructability in trajectory reconstruction: Given
camera motions, trajectory reconstruction [17] aims at esti-
mating a 3D point trajectory from 2D feature tracks. Park et
al. proposed a measure on the possibility of reconstruction,
namely “reconsructability”, by analyzing the correlation be-
tween camera trajectory and moving point trajectory. Specif-
ically, the reconstructability η, characterizing the relationship
between camera motion, point motion and the trajectory ba-
sis, is defined as:

η(Θ) =
‖Θ⊥β⊥C ‖
‖Θ⊥β⊥X ‖

' How poorly Θ describes C
How poorly Θ describes X

, (2)

where Θ is the pre-defined trajectory bases, C is the camera
trajectory, while X is the 3D point trajectory. In other words,
a complex C and a simple X result in a high value of η. Note
in trajectory reconstruction, the camera motion is available.

Reconstructability for NRSfM: To extend the concept of
“reconsructability” from trajectory reconstruction to general
NRSfM, we need to measure the complexity in both camera
motion and 3D shape variation.

Shape complexity: Given a primitive non-rigid shape S,
its complexity (reconstructability) can be well characterized
by the rank, i.e., ηS = rank(S).

Motion complexity: Under our formulation, camera mo-
tion only consists of the rotation component. As camera rota-
tion resides in a manifold as Ri ∈ SO(3), to define the com-
plexity of camera motion, we need to characterize the dis-
tance on the manifold. To ease the computation, we use the
chordal distance to evaluate the difference between rotations
as: dij = ‖Ri − Rj‖F . In this way the global motion com-
plexity could be defined as: ηR =

∑
i,j d

2
ij .

By putting the shape complexity and the motion com-
plexity together, we obtain the “reconsructability” for general
NRSfM as :

η(R,S) =
ηR(R)

ηS(S)
. (3)
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According to the definition, a larger motion complexity and
a smaller shape complexity will generally result in a higher
reconsructability, which is consistent with existing work in
NRSfM [16] [17].

Numerical examples: To evaluate the correctness of our
reconstructability for NRSfM, we set up a series of experi-
ments on the UMPM sequences [19] to analyze the relation-
ship between reconstructability and motion/shape complexity.

To obtain sequences with varying shape complexity, we
project ground truth UMPM 3D shapes into low dimensional
subspace with varying dimension K. Then we perform a Pro-
crustean alignment to the sequence such that all frames are
aligned to the first frame, thus eliminating the rigid compo-
nent in non-rigid shape deformation. We applied two different
kinds of camera motions in our experiments: 1). varying rota-
tion speed (from 0.1 degree per frame to 3 degrees per frame,
thus varying camera motion complexity) with a random di-
rection following a Gaussian distribution at each frame; 2).
completely random camera rotations at each frame, for which
the camera motion complexity has been maximized.

Experimental results are illustrated in Fig. 2, where the
two figures correspond to the two camera motion configura-
tions. In the varying camera rotation speed case as shown in
Figure 2(a), 3D reconstruction error generally increases with
the increase of shape complexity (rank) and decreases with
the increase of rotation speed. In the completely random cam-
era motions case as shown in Figure 2(b), as shape complexity
increases, the 3D reconstruction error increases correspond-
ingly. All these experiments demonstrate that our new recon-
structability clearly captures the essence in achieving better
3D reconstruction through evaluating shape complexity and
motion complexity.

(a) (b)

Fig. 2: Numerical experiments analyzing the relationship between
shape complexity, motion complexity and 3D reconstruction perfor-
mance. (a) 3D reconstruction error on the “Triangle” sequence with
varying shape complexity under different camera rotation speeds. (b)
3D reconstruction error for different UMPM sequences with varying
shape complexity under complete random camera motions.

3. NRSFM BY 3D SHAPE CLUSTERING

According to the definition of reconstructability in Eq.-(3), a
higher shape complexity will result in a lower reconstructabil-
ity. For long, complex non-rigid variation sequences, shape

Algorithm 1 Shape clustering based NRSfM.

Require: 2D feature tracks W (Complete or incomplete)
Initialize: 3D shape S(0) from a factorization method.
while Not converged do

1). Compute similarity matrix M(it) from 3D shapes S(it).
2). Clustering: apply spectral clustering method to the
similarity matrix M(it), getting K subsequences.
3). Reconstruction: Each subsequence is reconstructed
separately, and they are reassembled to S(it+1).

end while
Ensure: Non-rigid shape S, camera motion R.

complexity tends to increase with sequence length. Mean-
while, non-rigid variation in real world cases generally con-
sists of local shape variations with low complexity. Therefore,
we can increase the global reconstructability by clustering a
long sequence into subsequences. In this section, we present
an iterative shape clustering based NRSfM method.

3.1. 3D shape similarity

To cluster a long sequence into subsequences, an initial 3D
shape is required, as clustering on the 2D image measure-
ments is unable to indicate the real shape similarity of the
sequence [16]. The initialization is implemented by using
PND [10]. The initial 3D reconstruction could depart from
the ground truth. As explained later, our method does not
need a very accurate initialization.

Given and initial 3D reconstruction S(0), we can de-
fine a shape similarity matrix by comparing all the shapes
against each other. The similarity matrix M is computed
as M(i, j) = M(j, i) = exp(− ||Si−Sj ||F

σ ), where ||Si −
Sj ||F , i, j ∈ [1, 2, ..., P ] denotes the Euclidean distance be-
tween two shapes, and σ is a scaling parameter.

3.2. Shape clustering

Once the similarity matrix M is obtained, spectral clustering
[20] is used to cluster the whole sequence into subsequences.
The benefit of spectral clustering is that it is designed to han-
dle a similarity matrix directly, and can produce a stable clus-
tering result. Clustering results are generally sensitive to clus-
ter number K and the scaling parameter σ. Note that the sub-
sequences do not necessarily consist of continuous frames.

3.3. Iterative reconstruction and clustering

After shape clustering, each subsequence is reconstructed
separately by using off-the-shelf NRSfM methods. To get
a refined and stable result, we perform the above method in
an iterative manner. Each time we get a 3D reconstructed
sequence, it is used to update the similarity matrix and cor-
responding shape clustering. The complete algorithm is
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illustrated in Alg. 1 and also demonstrated in Fig.1.

4. EXPERIMENTAL RESULTS

We conducted extensive experiments on various long and
complex motion sequences. As PND [10] is the state-
of-the-art method, for the sake of space, we only com-
pared our results with PND. 3D reconstruction error e3D =
‖S− SGT‖F /‖SGT‖F is used to evaluate the performance.

4.1. Datasets

UMPM Dataset: The Utrecht Multi-Person Motion (UMPM)
benchmark [19] is a collection of video recordings of long
and complex human motion sequences. In each sequence we
extracted one human represented by 15 virtual joint positions
at 50 fps frame rate. Six sequences are used in our experi-
ment: 3 ball 12, p3 chair 16, p3 triangle 11, p4 circle 12,
p4 free 11, and p4 table 11, and the sequence lengths vary
from 2537 frames to 3143 frames.

CMU Mocap dataset: The CMU Mocap dataset also
contains long and complex human motions. In each se-
quence, 28 marker positions for one human are extracted at 40
fps. We used six CMU sequences: CMU86 04, CMU86 05,
CMU86 07, CMU86 08, CMU86 10, and CMU86 14, whose
lengths are between 2018 frames and 3359 frames.

4.2. Reconstruction results

For each UMPM and CMU sequence, we have a combination
of the number of cluster K varying from 2 to 5 and scaling
parameter σ of 10. Figure 3 shows the performance of our
method and PND on various datasets and configurations. In
all the figures, we compare three methods, namely PND, our
method with fixed parameters and our method with optimal
parameter for each sequence individually.

As shown in Fig. 3, on UMPM dataset our method outper-
forms PND on 5 out of the 6 sequences for fixed parameters.
If we have the freedom to select parameters for each sequence
individually, our method outperforms PND on all the 6 se-
quences. On CMU sequences, our method outperforms PND
on all sequences under different configurations.

We also conducted experiments on noisy measurements
case, where Gaussian noise was added to the UMPM se-
quences with a standard deviation of σn = 0.01 max{W}.
In Figure 3(c), our method outperforms PND in 5 of the 6
sequences again. Finally, we evaluated our method under
incomplete measurements case, where random missing data
ratio ranges from 5% to 25%. As demonstrated in Figure 3(d),
on the UMPM “Ball” sequence, our method shows superior
performance compared with PND with random missing data.
In both cases, our method achieves better results than PND,
which proves that shape clustering does not affect the baseline
method’s capability of missing data handling.

(a) UMPM sequences (b) CMU sequences

(c) UMPM sequences with noise (d) ”Ball” with missing data

Fig. 3: 3D reconstruction results on different sequences under dif-
ferent configurations.

(a) ei=0.0570 (b) ei=0.1965 (c) ei=0.1106 (d) ei=0.0601

(e) ei=0.1788 (f) ei=0.5052 (g) ei=0.2963 (h) ei=0.1492

Fig. 4: 3D reconstruction results of our method (top row) and PND
(bottom row) on UMPM dataset. “◦” indicates ground truth and “+”
indicates 3D reconstruction points. Parameters: K = 3, σ = 10.
Sequences from left to right: circle, free, table, triangle.

In Fig. 4, we illustrate the 3D reconstruction on the
UMPM “Triangle” sequence for our method and PND.
Clearly, our methods outperforms the current state-of-the-
art NRSfM method PND by a margin.

5. CONCLUSION

In this paper, we present a novel reconstructability measure
to general NRSfM and an iterative shape clustering based
NRSfM method. Our method is easy to implement and pushes
the performance of NRSfM methods to a new limit. Future
work include extending our method to dense NRSfM case and
automatic model selection in shape clustering.
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