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ABSTRACT

Recently, a supervised graph-based target detection method was pro-
posed based on a new affinity measure between a set of target train-
ing patches and a test image. In this paper, we propose a new high-
resolution detection score, which enhances the performance of the
previous method by utilizing the known locations of the targets in
the training images. We show that our new score is more reliable and
spatially accurate, not only improving the detection resolution of true
targets, but also reducing the number of false alarms. The method is
successfully tested on side-scan sonar images of sea-mines, demon-
strating an improved true detection rate. Our approach is general
and can improve the detection resolution of the target in other patch-
based detection algorithms for various signals and applications.

Index Terms— automatic target detection, object localization,
nonlinear-dimensionality reduction, mine detection, side-scan sonar

1. INTRODUCTION

Automated target detection in images is a common problem in many
civilian and military applications, where the images can be obtained
from a large variety of sensors such as radar, sonar or optical sen-
sors [1–6]. The goal is to automatically detect a target in a cluttered
background, or at least indicate suspicious regions with high proba-
bility of target presence for further inspection by an expert. This has
great practical importance, since typically a large number of images
are collected in such applications, and manual inspection is costly. A
supervised approach is useful in target detection, assuming a train-
ing set of target image patches is available to the algorithm prior to
acquiring the test image. This prior knowledge can be used for mod-
eling the target, feature selection, and training a classifier [1–3,7,8].
Target detection can be challenging due to noise, cluttered back-
ground, large variations in the target appearance, the large amount
of data to be processed, and limited labeled training data.

Supervised manifold learning methods, which construct a new
representation of test data using a training set, have become popular
in recent years for different applications, such as audio enhancement,
classification of electromagnetic measurements, texture extraction
and dynamical systems [9–12]. Recently, Mishne et al. [13] pre-
sented a new supervised target detection method. The method is
based on calculating a local model for each training patch using its
neighborhood within the training set. By controlling the measure of
locality that defines these neighborhoods, one can construct an affin-
ity measure that is invariant to perturbations in the appearance of the
target, as defined by the variability of the target in the neighborhood.
This new affinity is integrated in a graph-based framework to embed
the patches extracted from a test image in a low-dimensional space.
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The detection score is then calculated in this space to determine the
presence of a target.

Obtaining an accurate location of the target is important in both
military and medical applications, for example to ensure accurate
extraction of the object for classification, or precise acquisition of
the target for tracking [2, 14–17]. However, in [13] the detection
score for each test patch is associated with the center pixel of the
patch, and does not reflect the true target location within the patch.

In this paper, we introduce a method to enhance the spatial res-
olution of the detection score. By using prior information regarding
the exact location of the targets in the training images, we can cal-
culate a new high-resolution detection score which is more reliable
and spatially accurate. We show that this method improves the spa-
tial accuracy of the true detections, and reduces the number of false
alarms. We demonstrate our approach in the setting of sea-mine de-
tection in side-scan sonar images [1, 2, 13, 18–20]. However, the
presented method is not application-specific, and can be used to im-
prove the detection score of other patch-based supervised detection
algorithms, with minimal algorithmic changes.

The remainder of the paper is organized as follows. In Sec. 2 we
describe the supervised target detection problem setting, and briefly
review the method introduced in [13] that uses local models within
a given training set to define an affinity measure between training
and test patches. Section 3 presents a low-dimensional embedding
of the data based on the affinity measure. In Sec. 4, we present the
embedding-based detection score and a novel method for enhancing
the spatial resolution of the score. Finally, Sec. 5 presents experi-
mental results on real-world data. In particular, we focus on demon-
strating the improvement in detection performance attained by using
our method.

2. LOCAL NEIGHBORHOOD MODELING

2.1. Problem Setting

In supervised target detection, a set of training images (either real or
simulated) is typically used as a prior knowledge on the target ap-
pearance. Once a test image is acquired, the task is to detect whether
it contains a target and at which location. In our approach, the test
image and the set of training images are treated as sets of image
patches sized

√
N ×

√
N . We consider two sets of patches. The

first is a set of M training patches, denoted by {Zi}Mi=1, which is
obtained by extracting all the overlapping patches in the training im-
ages that contain sufficient target content. Patches in which the target
center is too close to the border or not even contained in the patch,
i.e. they contain mostly background pixels, are discarded. The sec-
ond set consists of M � M test patches, denoted by {Zi}Mi=1, and
contains all the overlapping patches from the test image.

We assume that each training patch contains target content with
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added independent measurement noise:

Zi(x) = f(x;θi) + ηi(x), x ∈ {1, ..., N}, (1)

where θi are the target appearance parameters, f(x;θi) is a smooth
nonlinear function of θi at pixel x, and ηi(x) is measurement noise.
More specifically, the parameters θi represent the degrees of free-
dom in the target appearance, such as width, length, and orientation,
and are implicitly defined based on the target examples in the given
task. Both θi and f(x;θi) are assumed to be unknown. This model
neglects explicit interactions between pixels in the patch, however,
since all pixels within the patch share the same mapping f and the
same parameter vector θ, this provides an implicit conditional de-
pendency between pixels. Test patches are modeled in an analogous
way, but they may contain background and measurement noise with
no target content.

2.2. Affinity Measure

Mishne et al. [13] recently presented a supervised target detection
method based on a new affinity measure between patches. The
affinity measure is constructed in a data-driven manner that encom-
passes the intrinsic target parameters. It aims to indicate whether
two patches contain similar target content, while being invariant to
perturbations in the target appearance parameters. Choosing a sta-
tistical distribution to model the target and background, or explicit
estimation of shape parameters are not required. Instead, the vari-
ability in the target appearance is learned from the relations within
local neighborhoods by calculating the statistics of each patch based
on its neighbors.

The neighborhood of a training patch Zi is denoted by Ni,
where the neighboring relations grouping similar patches together
are defined by the user; for example a naïve grouping can be attained
by using k-nearest-neighbors (of patches). For every training patch,
its empirical local pixel-wise mean and variance are estimated based
on its neighbors in the training set, defining a model for each patch:

µ̂i(x) =
1

k

∑
Zj∈Ni

Zj(x), σ̂2
i (x) =

1

k

∑
Zj∈Ni

(
Zj(x)− µ̂i(x)

)2
.

(2)
Note that the statistics are local in the sense that they are calculated
for a given pixel x in patch i, i.e., Zi(x), based on the corresponding
pixels Zj(x) in its patch neighborhood, i.e. for Zj ∈ Ni. These are
not spatial statistics within the patch Zi itself.

A non-symmetric affinity measure between training patch Zj ,
modeled using µ̂j and σ̂j , and test patch Zi is defined as

a2(Zi, Zj) =

N∑
x=1

(Zi(x)− µ̂j(x))2 /σ̂2
j (x). (3)

Pixels with low variance are more likely to contain target content, so
they should contribute more to the affinity measure, as opposed to
pixels with high variability. Pixels with high variance either indicate
high variability in the appearance of the target, or that they contain
only the background and do not contribute to determining the pres-
ence of a target. Therefore, high variance pixels should be assigned
a low weight. Hence, the contribution of each pixel to the affinity
measure is weighted according to the inverse of the local variance.

The local variance determines the weight of each pixel in (3),
and therefore, it implicitly defines an invariance to slight differences
in the appearance of the target. This property can be employed by
the user to define the neighborhoodsNi so as to achieve a desired in-
variance. For example, to construct an invariance to slight rotations,

patches containing the target at an identical location, but slightly
different orientations are grouped together. This can be done by
generating training images in simulation, thus having direct control
over the target parameters [14,15,21]. If the training set is extracted
from real data, the parameters are unknown, so choosing neighbors
is more challenging. One option is choosing k-nearest neighbors
using the Euclidean norm. Another option is to use the Hamming
norm between the binary target indicator patches. The binary indi-
cator patch has a value of ‘1’ for pixels in the training patch with
target content and ‘0’ for the rest (pixels with target content can be
marked in a supervised setting).

In terms of the intrinsic target parameters θ, neighboring patches
are consistent in some of the parameters, while having slight varia-
tions in others. For a given neighborhood, the parameter vector can
be conceptually separated into two sets: θ = (θc,θv), where θc are
the fixed parameters within the neighborhood, while the parameters
in θv have variability. The fixed parameters are assumed to describe
the target, whereas the varying parameters describe slight pertur-
bations in the target appearance to which we want to be invariant.
By learning the variance of each pixel in a patch neighborhood, the
contribution of each pixel to the affinity measure can be weighted,
where pixels with higher sensitivity to variations in θv are assigned
a lower weight. In this way, the constructed affinity measure is more
invariant to perturbations in the target appearance compared to the
Euclidean distance, which equally weights all the pixels.

Based on the Taylor expansion of Zi with respect to θ, it can be
shown [13] that the local empirical variance relates to the perturba-
tions in the parameters vector via:

σ̂2
i (x) ≈ ∇θvfT (x;θi)Ω

v
i∇θvf(x;θi) + σ2

η(x), (4)

where ∇θvfT (x;θi) is the gradient of f(x;θi) with respect to the
intrinsic parameters θv , Ωvi is a diagonal matrix with the empirical
variances of the parameters in θvi as its diagonal, and σ2

η(x) is the
variance of the measurement noise. Thus, the local empirical vari-
ance of the pixel x depends on the perturbations in the parameter
vector within the local neighborhood of the training patch.

3. GRAPH-BASED EMBEDDING

We define anM×M affinity matrix based on the affinity measure (3)
between the training set {Zj}Mj=1 and test set {Zi}Mi=1:

A[i, j] = exp{−a2(Zi, Zj)/ε
2}, (5)

where ε is a scale factor, commonly set as the median of the distances
within the training set. The Gaussian function enhances locality, as
patches with distance larger than ε have negligible affinity.

This matrix is used to calculate a low-dimensional embedding
of the training and test patches. The singular value decomposition
(SVD) of the matrix A yields a set of decreasing singular values{√

λl
}M
l=1

(M < M ), left singular vectors {ψi}Ml=1 ⊆ RM and

right singular vectors {φl}Ml=1 ⊆ RM. The relationship between the
first M singular left and right eigenvectors of A can be expressed
as [10, 22]:

ψl =
1√
λl

Aφl. (6)

The squared singular values {λl}l and right singular vectors

{φl}Mi=l are the eigenvalues and eigenvectors of the symmetric M ×
M matrix: W = ATA. The matrix element W[i.j] can be inter-
preted as an affinity measure between two training patches Zi and
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Algorithm 1 Supervised Target Detection Algorithm

Training phase: Given training set {Zj}j
1: Define neighborhoods {Nj}j
2: For each Zj ,Nj calculate µ̂j(x) and σ̂j(x) (2)
3: Optional: Calculate W, {λl}l, {φl}dl=1

Test phase: Given test patches {Zi}Mi=1, training shifts {∆(j)}j
4: Calculate affinity matrix A (5)
5: Calculate test set embedding {ψl}dl=1 using SVD of A or (6)
6: Detection score: for i = 1 to M do
7: Calculate the embedding norm s(i) (8)
8: Initialize new detection score to zero: s̃(i)←− 0
9: for j = 1 to M do

10: Calculate wij (10)
11: s̃(i+ ∆(j))←− s̃(i+ ∆(j)) + wijs(i)

Zj via all the patches in the test set [9,11]. The spectrum of the sym-
metric matrix W typically exhibits a spectral gap, i.e. only a few
eigenvalues have significant value, while the rest are close to zero.
Thus, by retaining only the d most significant spectral components,
the leading d left singular vectors are used for the low-dimensional
embedding of the test patches, {Zi}Mi=1:

Ψd(i) : Zi →
(
ψ1(i), ψ2(i), ..., ψd(i)

)
. (7)

The embedding maps each patch Zi to a d-dimensional vector, and
is expected to reveal which patches in the image are similar to the
reference set. In similar fashion, the right singular vectors provide a
low-dimensional embedding of the training set {Zi}Mi=1 [10,12,22].

The matrix W can be approximated in the training phase solely
using the training data, as in [13]. Its eigen-decomposition yields
{λl}l and {φl}l. Then, for each test image, the embedding of the
test patches {ψl}l can be efficiently calculated using simple matrix
multiplication by A (6), instead of performing SVD for each image
separately. This is a significant advantage of the supervised graph,
as opposed to unsupervised manifold learning [23] that requires per-
forming a costly calculation and eigen-decomposition of anM ×M
affinity matrix on the test image. In target detection, the test image
typically exhibits non-uniform sampling, and it is advised to use the
Laplace-Beltrami normalization as in [10, 13, 22, 24], so the embed-
ding does not depend on the density of the data points.

4. TARGET DETECTION

4.1. Embedding-based Detection Score

In the low-dimensional embedding of the test patches, the target
can be separated from the background. According to (6), the coor-
dinates of the embedding are a weighted sum of the affinities of the
test patch to all training set patches. Background patches have low
affinity to all the training patches, since they do not contain the tar-
get, i.e. for a background patch Zi, A[i, j] → 0 ∀j ∈ 1, ...,M .
Hence, their embedding will have low values. However, test patches
with target content have high affinity to some of the training patches,
hence their embedding has higher values. Therefore, background
patches are expected to cluster near the origin in the embedding
space, while target patches are embedded far from the origin.

Thus, an embedding-based detection score s(i) can be defined
for every test patch i [13]:

s(i) = ‖Ψd(i)‖2 =

d∑
l=1

ψ2
l (i). (8)

Fig. 1. (a) Original image: target indicated by green arrow, false
alarm indicated by red arrow. (b) Low-resolution detection score:
both target and false alarm receive a high score and the score is not
centered on the object. (c) High-resolution score is concentrated at
the target location and with significantly higher values than at the
false alarm location.

A higher detection score indicates higher likelihood for target pres-
ence. Note that another reasonable detection score can be the sum
of the affinity of a test patch to all the training set. However, ex-
perimental results show that the affinity sum is a less reliable target
indicator compared to the embedding norm [13]. Thus, the affinity
in itself is insufficient to determine the presence of the target, and the
embedding is an essential component of the proposed approach. The
SVD provides a global representation, integrating all the affinities of
all patches, instead of treating each test patch on its own.

4.2. High-resolution Detection Score

The training set is composed of all overlapping patches extracted
from training images of the target, containing sufficient target con-
tent. Therefore, in most training patches, the target center is not
located at the center pixel of the patch. Yet, when comparing it to
a test patch, the detection score is (arbitrarily) associated with the
center pixel of the test patch, and not the true target location. Thus,
a pixel with a high detection score indicates the presence of a target
with a location uncertainty of half the patch length. This results in
the detection score image having low spatial resolution, limited by
the patch size. In this section, we present a new method to enhance
the spatial resolution of the detection image by using the target lo-
cation in each training patch. As this is a supervised approach, we
assume that the exact locations in the training images are available.

For every patch that is extracted from a training image, we cal-
culate the shift of the target center relative to the patch center using
the known target location in the training image. The shift in training
patch j is defined as:

∆(j) = (∆x(j),∆y(j)), j = 1, ...,M, (9)

where ∆x(j) and ∆y(j) are the horizontal and vertical shifts respec-
tively.

We will use these shifts to calculate a new high-resolution score
for each test patch. The affinity matrix (5) indicates the contribution
of each training patch to the score of a test patch. If a given training
patch has a certain shift and this patch has high contribution to the
score of a test patch, then we want to “move” the score using the
same shift to the appropriate pixel in the test image. In general, a
test patch can have high affinity to several training patches. We want
to distribute the score according to the shift of each training patch in
a weighted manner. We choose the weight wij to be the affinity (3)
between the test patch Zi and the specific training patch Zj , relative
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(a) (b) (c) (d) (e)

Fig. 2. Training images of sea mines in side-scan sonar. The images
(b) and (d) are vertical reflections of (a) and (c), respectively, added
to the set to increase variability. The sea-mine highlights were satu-
rated in order to diminish variability of target intensity in the training
set, which is due to noisy acquisition. The training set is composed
of overlapping patches extracted from the five training images.

to the affinity to all the training set:

wij =
A[i, j]∑M
l=1 A[i, l]

. (10)

Thus, the affinity (3) is integrated in both the embedding and the
detection score. Our method is summarized in Algorithm 1, where
the new detection score is denoted by s̃(i).

The algorithm “localizes” the score in the detection image at
the target center location. Thus, we get a more reliable and spatially
accurate detection. Note that steps 8-11 in Alg. 1 are general and can
be applied to other patch-based detection methods, and also used for
target detection and tracking in 1D and 3D. The method relies on an
available training set of target patches, in which the relative target
location inside each patch varies and is known. An affinity measure
between training and test patches is also required, but is not limited
to the proposed affinity (3).

Figure 1 illustrates the benefits of the new resolution enhance-
ment method. The original image (a) contains both a target and a
false alarm, indicated by the green arrow and a false alarm indicated
by the red arrow. Using the embedding norm score, high values are
assigned at the edges of the target, but low values at its center (b).
Moreover, the false alarm gets a higher score than the target. The
two problems are solved when applying the high-resolution score
(c): the detection score is concentrated at the true target location and
with significantly higher values than for the false alarm.

5. EXPERIMENTAL RESULTS

In this section the proposed method is tested in a sea-mine detec-
tion problem with real-world side-scan sonar images. The images
contain sea-mines (the desired target) as well as reflections from
the seabed (which are considered background clutter). Sea-mines
appear as bright white objects (highlights) accompanied by a dark
region (shadow) to their right, which is the result of the sea-mine
blocking the sonar waves from reaching the sea-bed [18, 19]. The
method is tested on a set of 46 side-scan sonar images of sea-mines
collected by the Naval Surface Warfare Center Coastal System Sta-
tion (Panama City, FL). Each image is cropped to a region sized 200
(range)× 200 (cross-range) cells which contains a sea-mine and var-
ious background types. The typical size of a sea-mine in the images
is about 15 by 3 pixels for the highlight and shadow length is about
15 pixels. The patch size N is therefore chosen based on the prior
knowledge on the typical size of the target and the image resolution,
such that it covers a significant portion of the target but not necessar-
ily its entire body. Based on experiments with the data set, we chose
patches of size 10×10 pixels.

Training images of the target used for our training set are shown
in Figure 2. For more variation in the possible orientations of the
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Fig. 3. TP percentage versus FA rate. (Blue, “square”) low-
resolution score [13]. (Red “circle”) High-resolution score.

target, we added vertical reflections of two images (b),(d) to three
existing images (a),(c) and (d). The training images exhibit varia-
tions in orientation, size and shadow shape. The size of each training
image is about 25× 25 pixels. All overlapping patches are extracted
from the images, but patches with low target content are discarded.
After obtaining only the relevant patches we get a training set {Zi}
ofM = 277 patches sized 10× 10 pixels. From each test image, we
extract a set of M = 36481 overlapping patches. The embedding
dimension was set to d = 9.

In Fig. 3, we demonstrate the improvement gained by our high-
resolution score. Our high-resolution score image is calculated using
Algorithm 1. We compare our score to the method proposed in [13],
in which each pixel is assigned the norm of its embedding coordi-
nates (8). The score images are then spatially smoothed to repress
small detections which are due to noise using a narrow Gaussian fil-
ter of size 3× 3 and standard deviation of 0.5. We calculate a ROC
curve by applying a threshold to the detection score, resulting in a
binary image. A detection on the sea-mine is considered to be a true
positive (TP) for a given image, and any other detections are false
alarms (FA). Thus, there may be more than one FA per image, but
only one TP. Each threshold gives us a (TP,FA) pair plotted in the
ROC curve. For each method, we plot the percentage of TPs per
overall number of FAs in the test set. The blue (squares) plot is the
ROC curve for the original algorithm, whereas the red (circles) plot
is the curve for the improved detection score. Our high-resolution
score yields a significant gain of approximately 7 percent for low
number of FAs. For number of FAs greater than 1, we achieve a TP
percentage higher than 90%.

6. CONCLUSIONS

We have presented a data-driven target detection method in a super-
vised setting based on a new affinity measure. Our method embeds
the test image patches in a low-dimensional space, enabling simple
calculation of a detection score. We introduced a new method to
enhance the spatial resolution of the detection score based on the
affinity measure and the known target locations in the training set.
In contrast to the common practice of associating the detection score
with the center pixel of a test patch, we distributed the score across
the test patch, thereby concentrating the score at the correct location
of the target. Our method is general and can improve the detection
resolution of supervised patch-based algorithms, and as a result, en-
hance their reliability and spatial accuracy. The new method has
been tested in the task of sea-mine detection in side-scan sonar im-
ages and significantly improved the detection results.
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