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ABSTRACT

The anomaly detection task plays an important role in quality
control in many industrial or manufacturing processes. How-
ever, in many such processes, anomaly detection is done vi-
sually by human experts who have in-depth knowledge and
vast experience on a product in order to perform well in the
detection task. In this paper, we present an approach that (i)
identifies anomalies in an image based on the sparse residuals
(or errors) obtained during image reconstruction using sparse
representation and (ii) learns the threshold to classify an im-
age pixel based on its residual value. The intuitions for our
proposed sparse approximation driven approach are, namely:
(i) anomalies are infrequent and (ii) anomalies are unwanted
portions of an image reconstruction. Empirical results on a
real-world image dataset for an industrial surface defect de-
tection task are used to demonstrate the feasibility of our pro-
posed approach.

Index Terms— Parameter optimization, sparse recon-
struction, anomaly detection, defect detection, quality control
and automated inspection

1. INTRODUCTION

Anomaly detection is the task of finding abnormality in data
that do not conform to the expected patterns. Its real-world
applications include intrusion detection [1, 2], fraud detec-
tion [3], abnormal event detection from surveillance video
[4, 5] and many others [6]. Traditionally, anomaly detection
for product quality control is done by human experts who are
trained and have experience to identify anomalies. However,
anomaly detection by human is not efficient and the results are
very subjective. Hence, product inspection by human should
be replaced or complemented by objective automated inspec-
tion [7, 8, 9, 10].

One main characteristic of image-based inspection pro-
cess is that images are taken from multiple fixed viewpoints
of a three-dimensional object of interest. These images are
then used for anomaly detection. This is to ensure that the ob-
ject surface is exhaustively analyzed. One challenging char-
acteristic of surface anomalies is that they come in different

forms, shapes, and sizes. Figure 1 shows image patches of
different anomalies that have significant different characteris-
tics on a metallic surface. Besides different viewpoints, there
could also be variation in the illumination (or light intensity)
in the images.

Fig. 1: Examples of anomalies on metallic surfaces. (Left to
Right): Melt, Melt, Shadowing, Plus Metal.

Sparsity enforcement for approximation (or coding) has
been widely used in different fields and problems in esti-
mating sparse high dimensional vectors. The earliest work
on sparse approximation reconstructs signals with a precon-
structed overcomplete dictionary (or basis set) [11]. Previous
work that exploited sparsity property for anomaly detection
utilized the reconstruction cost [12] and localized sparsity
[13]. These approaches are applied to abnormal event detec-
tion in videos. To improve the accuracy of sparse approxima-
tion and to reduce redundancy in a dictionary, the dictionary
could be learned from a training dataset [14]. Two recent
works closely related to this paper utilize sparse approxima-
tion for background subtraction in images [15] and for face
recognition when occlusion or corruption occurs [16].

In this paper, we present an approach that (i) identifies
anomalies in an image based on the sparse residuals (or er-
rors) obtained from a reconstruction using sparse representa-
tion and (ii) learns the threshold to classify an image pixel
from its residual value. Residuals are the deviation of the ob-
served feature values (e.g., grayscale values of pixels in an
image) from the reconstructed (or estimated) values. Figure 2
shows the flow diagram of our proposed approach.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe and discuss our proposed anomaly detec-
tion approach and parameter optimization in detail. Section 3
presents detailed experimental result on an industrial problem
related to anomaly detection for quality control to show the
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Fig. 2: Flow diagram of anomaly detection using sparse im-
age reconstruction. In the results, white and black pixels rep-
resent the estimated anomalous and estimated normal pixels.

feasibility and performance of our proposed method.

2. METHODOLOGY

2.1. Sparse Reconstruction

The objective of sparse reconstruction is to utilize a few atoms
(or words) in a dictionary to reconstruct an input data (e.g., an
image) with high similarity (See Figure 2). The main moti-
vation for using sparse approximation to detect anomalies is
as follows: An image that does not contain anomalies is ide-
ally reconstructed by sparse approximation with zero residual
when the dictionary consists of atoms that describe normal
situations. On the other hand, an image that contains anoma-
lies is represented by a sparse representation together with
sparse residual.

A p-dimensional data vector x = (x1, x2, . . . , xp) can be
decomposed into the form x = D ·α where D is a m× p un-
derdetermined matrix (m >> p) and α = (α1, α2, . . . , αm)
is a m-dimensional vector. D is called a dictionary (or design
matrix) with m atoms (or words) of size p. If α is sparse, the
decomposition is called sparse approximation (or decomposi-
tion) and α can be estimated by solving the following mini-
mization problem:

min
α,e
‖α‖1 + ‖e‖1 (1)

s.t. x = Dα+ λ′e

The two l1 norm functions in the minimization problem
are used to learn sparse α and e vectors, e is a p-dimensional
vector which represents the errors and λ′ controls the tradeoff
between the sparsities of α and the errors1.

2.2. Anomaly Detection

After identifying the likely regions Rj , j = 1, . . . , l that con-
tain anomalies, we locate the anomalies using a simple pixel-

1Note that in this paper, errors has similar definition as residuals defined
in Section 1.

based threshold classifier

C(xi) =

{
1, |ei| − T > 0
0, |ei| − T ≤ 0

(2)

where pixel xi ∈ Rj and C(xi) returns 1 when the pixel
is predicted to be an anomaly based on the absolute resid-
ual value |ei| obtained from (1) and a predefined threshold T .
C(xi) returns 0 when the pixel is predicted to be normal. The
main challenge is to select the most discriminative threshold,
T .

Although the anomaly detection task is formulated as a bi-
nary classification task (See Figure 2), it is similar to the task
of one-class classification with outliers. Hence, we learn the
pixel-based threshold classifier (i.e., T ) using a simple varia-
tion of the one class support vector machine [17] as follows.

min
T
T +

1

η

∑
i,k

ξi,k (3)

s.t. T − |ei,k| ≥ −ξi,k, i = 1...m, k = 1...p

ξi,k ≥ 0, T ≥ 0

where m is the total number of training images, ξi,k are slack
variables corresponding to the residual ei,k for pixel k in im-
age i. η controls the tradeoff between the threshold and the
total sum of slack variables.

2.3. Finding Best λ′, η and T

To achieve a competitive detection performance, one needs
to find the best λ′, η, and T using the training images whose
pixels are marked either as abnormal or normal. Algorithm
1 shows the procedure to obtain these parameters. Given a
dictionary D, the inputs to the algorithm consist of the set
of labeled training images, It, the stopping criterion S for
the procedure, and the search granularity N that affects the
computational time of the algorithm.

Step 1 initializes λ′ and η and the variables required to
compute the stopping criterion, i.e., the difference between
the two best accuracies in one iteration. p is the total num-
ber of pixels for each image in It. The accuracy computed in
Algorithm 1 for the stopping criterion is the balanced accu-
racy described in Section 3.2. When the stopping criterion is
not satisfied, the algorithm repeats steps 3 to 27, the search
procedure to find the best parameters.

For steps 3, maxAccp, λ′p and ηp store the best accuracy
and the λ′ and η obtained during the previous iteration of the
outer while loop. Minimum and maximum of λ′ domain are
also initiated for the while loop from steps 4 to 12. From steps
5 to 11, we narrow down the possible λ′ domain that gives
the best λ′ by looking for the best accuracy (based on It) at
a fixed η based on a search in the λ′ domain depending on
the granularity N . Step 7 finds the likely anomalous regions
based on the sparse residual in the sparse approximation (1)
for a given λ′[i]. Step 8 finds threshold T [i] using (3) using
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the fixed η. Step 9 performs classification on the pixels of the
images in It based on the pixel-based threshold classifier (2)
using T [i]. Then, the balanced accuracy acc1[i] (see (4)) is
computed (similarly for acc2[i] in step 19).

For steps 11, the indices of the λ′ vector and their cor-
responding highest and second highest accuracies are found
and stored. The best λ′ to be used for steps 15 to 21 and the
smaller λ′ domain to be searched in the next iteration of the
inner while loop (steps 4 to 12) when the stopping criterion in
step 4 is not satisfied are stored too.

Steps 15 to 21 follow similar procedure as steps 5 to 11
except that we now search for the best η. Step 23 stores the
best accuracy maxAcc achieved in the iteration of the outer
while loop. It is clear the highest accuracy is obtained in the
procedure from steps 14 to 22 since this procedure also uses
the best parameters obtained from steps 4 to 11 for anomaly
detection. It also stores the threshold used to construct the
best classifier in this iteration. In steps 24 to 27, if the current
best accuracy maxAcc obtained from this iteration is not bet-
ter than the previous iteration, revert λ′ and η to the values in
the previous iteration and the optimization ends.

Algorithm 1: Finding Best λ′, η and T
Input: It, set of labeled training images; stopping

criterion, S; search granularity, N
Output: λ′o, ηo and To
1: ηo = p

2
;λ′o = 0;maxAccp = 1;maxAcc = 0; acc1a =

1; acc1b = 0; acc2a = 1; acc2b = 0
2: while ‖maxAcc−maxAccp‖ > S do
3: maxAccp = maxAcc; λ′p = λ′o; ηp = ηo; λ′min = 0.001;

λ′max = 1000
4: while ‖acc1a− acc1b‖ > S do
5: for i = 0 to N do
6: λ′[i] = λ′min + i

N
(λ′max − λ′min)

7: Find likely anomaly regions using (1) for λ′[i]
8: Find T [i] using (3) given η0
9: Apply (2) to obtain acc1[i] using T [i] on It

10: end for
11: k1 = argmaxi(acc1); k2 = argmaxi(acc1 \ acc1[k1]);

acc1a = acc1[k1]; acc1b = acc1[k2]; λ′o = λ′[k1];
λ′min = min(λ′[k1], λ′[k2]); λ′max = max(λ′[k1], λ′[k2])

12: end while
13: ηmin = 1; ηmax = p
14: while ‖acc2a− acc2b‖ > S do
15: for j = 0 to N do
16: Find likely anomaly regions using (1) for λ′o
17: η[j] = ηmin + j

N
(ηmax − ηmin)

18: Find T [j] using (3) for η[j]
19: Apply (2) to obtain acc2[j] using T [j] on It
20: end for
21: k3 = argmaxj(acc2); k4 = argmaxj(acc2 \ acc2[k3]);

acc2a = acc2[k3]; acc2b = acc2[k4]; ηo = η[k3];
ηmin = min(η[k3], η[k4]); ηmax = max(η[k3], η[k4])

22: end while
23: maxAcc = acc2[k3]; To = T [k3]
24: if maxAccp > maxAcc then
25: maxAcc = maxAccp; λ′o = λ′p; ηo = ηp
26: break
27: end if
28: end while

Note that the best λ′ and T for the anomaly detection
approach is highly dependent on the dictionary. Hence, Al-
gorithm 1 needs to be rerun after the dictionary is changed.
However, note that the focus of this paper is not on the learn-
ing of dictionary. In Section 3, we demonstrate and com-
pare the performance of our approach on different fixed and
learned dictionaries.

Algorithm 1 can be considered as a two-step greedy
search first on λ′ and then on η. The training accuracy, in
general, is concave with respect to λ′ and η. However, it is
non-smooth locally. Hence, we utilize a greedy approach to
find a near-optimal λ′ and η that achieve good accuracy.

3. EXPERIMENTAL RESULTS

3.1. Metallic Object Dataset

The dataset used in our experiment is a subset of large num-
ber of images collected from an automated visual inspection
process for quality control in metallic object manufacturing2.
The anomalies that we are interested in identifying are de-
fects on the metallic surface. The dataset consists of 641 im-
ages with a resolution of 2448 × 2050 pixels. 368 images
do not contain any defect and 273 images contain one of the
three defects: “melt”, “plus metal”, and “shadowing”. Each
image is taken from one of the six viewpoints of the object
of interest. Some defects have complicated illumination de-
pendent characteristics. For example, ”plus metal” can only
be visible in dark condition. These defects are labeled as the
anomalies in the images for our experiment. Each image with
anomaly has a ground truth image for performance evaluation
purposes. In the ground truth image, a pixel can be either a
defect (abnormal) pixel or a defect-free (normal) pixel.

3.2. Experimental Design

Due to high computational cost of high resolutions, images
are downsampled using bicubic interpolation. The pixel val-
ues which are larger than zero in the downsampled ground
truth images are labeled as anomalous pixels. All 368 im-
ages containing defect-free objects are used to construct the
dictionaries. For comparison purposes, three dictionaries are
used in our experiment, namely: (i) normalized images, (ii)
dictionary learned using the online robust dictionary learning
(ORDL) [18], and (iii) dictionary learning using scale adap-
tive dictionary learning (SADL) [19].

For performance evaluation, the balanced accuracy [20]

Accb =
1

2

(
TP

P
+
TN

N

)
(4)

is used. TP and TN are the number of true positive pixels
and true negative pixels, respectively. P and N are the num-

2Due to confidentiality, the description is limited.
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bers of positive and negative test pixels, respectively. Accb is
the average between the sensitivity and specificity measures.

3.3. Empirical Results and Discussions

3.3.1. Performance of different dictionaries at fixed λ′

Figure 3 shows receiver operating characteristic (ROC)
curves for three dictionaries stated in subsection 3.2 and
three λ′ values: 0.001, 1, and 10. The image resolution is
30 × 30 after downsampling. To learn a dictionary using
ORDL, the number of images in a batch and the number of
atoms are set to 200 and 368 (the number of images without
defect), respectively. To learn a dictionary using SADL, the
maximum number of atoms in the dictionary is set to 500.
Note that the dictionary learned using SADL has only 14
atoms. The pixels of the 273 images with anomaly are used
to construct the ROC curves. The true and false positive rates
in the ROC curves are computed by varying the thresholds
from the lowest to the highest absolute residual value.

Fig. 3: ROC curves of three dictionaries at different λ′: (top
left) normal dictionary; (top right) ORDL dictionary; (bottom
left) SADL dictionary; (bottom right) comparison of ROC
curves for all 3 dictionaries.

Figure 3 (bottom right) shows a comparison of the best
anomaly detection performance using the three dictionaries
for sparse approximation. One interesting observation is that
the best performance using the learned dictionary of only 14
atoms from SADL is comparable to using a dictionary with
368 atoms. Online approach of learning dictionary may result
in lost in critical information. As a result, it does not perform
as well as the other two dictionaries.

3.3.2. Performance of different dictionaries using proposed
parameter learning method

The images containing anomalies are split into five sets to per-
form the five-fold cross-validation for the proposed parame-
ter learning method (Algorithm 1). Table 1 shows the aver-
age balanced accuracy, Accb when the near-optimal λ′ and
learned T from Algorithm 1 are used to identify the anoma-
lies in the test images with image resolution of 15 × 15. It
shows that Algorithm 1 performs the best when all the im-
ages containing defect-free objects are used in the dictionary.

Dictionary Normalized images ORDL SADL
Average Accb 0.69 0.63 0.63

Table 1: Comparison of (balanced) accuracies of different
dictionaries with parameter optimization at 15× 15 pixel res-
olution.

3.3.3. Effect of downsampled resolution on performance.

Table 2 shows the averageAccb when parameter learning (Al-
gorithm 1) with dictionary containing images of defect-free
object at different image resolutions are used. It should not
be surprising to observe that higher resolution images result in
better Accb. However, higher resolution images mean higher
computational cost since some iterative steps in Algorithm 1
requires handling the images in the dictionary.

Resolution 5× 5 10× 10 15× 15 20× 20
(pixels)

Average Accb 0.56 0.65 0.69 0.70
Table 2: Comparison of (balanced) accuracies of dictionary
containing images of all images of defect-free object with pa-
rameter optimization at various image resolutions.

4. CONCLUSIONS

We present an approach that (i) identifies anomalies in an
image based on the sparse residual (or error) obtained from
an image reconstruction using sparse representation and (ii)
learn the threshold to classify an image pixel from the sparse
residual. The intuitions for our proposed sparse approxima-
tion driven approach are, namely: (i) anomalies are infre-
quent and (ii) anomalies are unwanted portions of an im-
age reconstruction. Empirical results on an image dataset for
surface defect detection obtained from an industrial setting
demonstrate the feasibility of our proposed approach.

5. ACKNOWLEDGMENTS

This work was conducted within the Rolls-Royce@NTU Cor-
porate Lab with support from the National Research Foun-
dation (NRF) Singapore under the Corp Lab@University
Scheme and Energy Research Institute@NTU under In-
terdisciplinary Graduate School in Nanyang Technological
University.

1989



6. REFERENCES

[1] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Ay-
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