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ABSTRACT

A novel double-threshold pulse coupled neural networks (DT-

PCNN) is proposed and applied to shadow detection. It at-

tempts to reduce the false detection of shadows in a single

image where the hue and brightness of some non-shadow re-

gions are similar to or even lower than those of shadows.

Shadows whose intensity and hue fall in between those of the

scene and objectives are often viewed as non-shadows by the

single dynamic threshold of PCNN. Moreover, entities with

similar or darker hue and intensity may be wrongly classified

as shadows. To solve this problem, two different dynamic

thresholds that iteratively alter are designed. The upper and

lower limits of detecting shadows are determined respectively

by a higher threshold that decreases iteratively and a lower

one that increases iteratively. The detection result is obtained

by a fusion of two detection components. Experimental re-

sults demonstrate that compared to other tested methods, the

misclassifications are significantly reduced and the shadows

are more accurately extracted.

Index Terms— Shadow detection, double-threshold

pulse coupled neural networks (DTPCNN)

1. INTRODUCTION

Shadows, the common physical phenomena in most scenes,

provide useful clues of the scene characteristics which can

help in visual scene understanding. However, shadows can

also cause complications in image processing and computer

vision. They can degrade the performance of object recogni-

tion [1], image feature extraction [2], scene analysis [3] and

face recognition [4]. It is easy for the human eye to distin-

guish shadows from objects, but identifying shadows by com-

puter is a challenging research problem.

In many applications, the performance of a final image

analysis task is highly dependent on shadow detection perfor-

mance. Shadow detection is of great practical significance in
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image processing, which has attracted great attention over the

past decades. Many proposed approaches either are designed

for specific applications or need some assumptions about the

environments. In addition, the majority of the proposed meth-

ods focus on detecting moving shadows in image sequences

[5]. Some methods that can work on single still images suf-

fer from needing some prior knowledge or only being able to

work in specific applications [5, 6].

One of the well-known methods is the Tricolor Attenua-

tion Model (TAM). Based on TAM, a multistep shadow de-

tection algorithm was presented [7]. Although the method

can extract shadows from a single image with complex out-

door scenes, some parameters need to be estimated. More-

over, it will fail on detecting shadows in sunrise and sunset.

[8] went further by enhancing the TAM image using adaptive

histogram equalization. Besides, [9] presented a hypothesis

test to detect shadows by comparing average color values of

R, G and B components with original R, G and B values of im-

age. A region based approach was employed to detect shad-

ows from a single still image [10]. [11] selected a method

on the basis of the mean value in A and B planes of LAB

color space. Deb and Sunny proposed a method based on the

YCbCr color space [12]. But dark areas are often misclassi-

fied as shadows. Handling shadows in image processing is a

challenge task as they cannot be removed by conventional de-

noising filters [13, 14]. A method was presented by taking ad-

vantage of the inherent sensitivity of digital camera sensors to

the near-infrared (NIR) part of the spectrum [15]. Motivated

from the deep learning, [16] employed multiple convolutional

neural networks to learn useful feature representations for the

task of shadow detection from a single image. However, ob-

jects with dark albedo and narrow shadowy regions caused

by structures turn out to be difficult cases for this approach.

Moreover, some ambiguities are caused.

Due to specific characteristic of grouping neurons accord-

ing to spatial proximity and intensity similarity, pulse coupled

neural network (PCNN) based on the studies of mammals vi-

sual system has been developed as a powerful processor for

image processing. Different from traditional artificial neural

networks [17], models of PCNN have biological background

[18]. Some properties of PCNN, such as the one-to-one cor-

respondence between the image pixels and neurons and its
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non-training nature, make it widely applied in various image

processing domains such as image segmentation, object de-

tection, optimization and pattern recognition [18, 19].

Although the PCNN model has been introduced to shadow

detection, the applications are very few. Taking advantage of

the powerful segmentation ability of the PCNN model and

combining with the shadow attributes, a novel shadow elim-

ination method based on the improved PCNN model was

put forward [20]. Based on the phenomena of synchronous

pulse bursts in animal visual cortex, [21] introduced a PCNN

approach for image shadow removal. [22] proposed a PCNN

method improved by characters of lateral inhibition of human

vision and coefficient of variation for shadow detection.

It is difficult to distinguish between shadows and non-

shadows when they have similar hue and intensity. PCNN is

closely relevant to human visual mechanisms, and by which

the non-expectation features of visual cortex neurons can be

simulated well [19]. But, when the hue and brightness of

some non-shadow regions are close to or even lower than

those in the shadow regions, conventional methods and PCNN

often misread shadows as non-shadows, or wrongly classify

the entities as shadows. To address this problem, two dif-

ferent dynamic thresholds are hypothesized, and the Double-

Threshold PCNN model is proposed.

2. PCNN MODEL

PCNN is a single layer, two-dimensional, laterally connected

network of integrate-and-fire neurons [18, 19]. The PCNN

neuron model is shown in Fig.1. One-to-one correspondence

exists between image pixels and neurons. Every neuron in

PCNN has the same connection mode. Each pixel is con-

nected to a unique neuron and each neuron is connected with

the surrounding neurons. The PCNN model’s main parts are

the receptive field, the modulation product and the pulse gen-

erator [18]. Formally, its mathematical description is as fol-

lows:
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Fig. 1: PCNN neuron model

Fij [n] = e−αFFij [n−1]+VF

∑
k,s

MijksYks[n−1]+Iij (1)

Lij [n] = e−αLLij [n− 1] + VL

∑
k,s

WijksYks[n− 1] (2)

Uij [n] = Fij [n](1 + βLij [n]) (3)

Yij [n]=Uij [n]−θij [n−1]=
{

1 Uij [n]>θij [n− 1]
0 Uij [n]≤θij [n− 1]

(4)

θij [n] = e−αTij θij [n− 1] + VTij
Yij [n] (5)

3. THE PROPOSED DTPCNN MODEL

Shadow regions whose intensity and hue fall in between those

of the scene and objectives are often viewed as non-shadows

by single dynamic threshold of PCNN. Moreover, entities

with similar or darker hue and intensity may be wrongly

classified as shadows. To solve this problem, two different

dynamic thresholds that iteratively alter are hypothesized,

and the DTPCNN model is developed.

Compared with other PCNN models, the greatest differ-

ence and improvement of the DTPCNN model is the struc-

ture of the threshold regulator. In the PCNN models, each

neuron is corresponding to single dynamic threshold. As a

result, when the color and intensity of some non-shadows are

close to or even lower than those in shadow regions, the in-

tensity of shadow regions is higher than that of darker entities

in non-shadow regions. The histograms of shadows and dark

entities in non-shadow areas are shown in Fig.2. Hence, the

entities of these objects are easily misunderstood as shadows.

To solve this problem, we propose to add a new threshold reg-

ulator into the PCNN model. The resulting DTPCNN model

has two different dynamic thresholds, as shown in Fig.3.

(a) (b) (c)

(d) (e) (f)

Fig. 2: Images and histograms of shadow and dark entities

in non-shadow regions: (a) - (c) are sample images; (d) - (f)

are histograms of the dark entities in non-shadow areas and

shadows in (a) - (c).

In the proposed approach, a pixel in an image is consid-

ered as a neuron of DTPCNN. Accordingly, the intensity of

the pixel, Iij is viewed as the enternal stimuli of a neuron.

The feeding input Fij receives the external stimulus Iij and
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Fig. 3: Double-threshold PCNN model

the output pulse Y from its neighboring neurons. The linking

input Lij receives the pulses from neighboring neurons and

output signals. In the modulation field, Lij is combined with

and further modulated with Fij to form the internal activity

Uij which will be delivered to the pulse generator. The pulse

generator compares Uij with the dynamic thresholds, namely

the higher threshold θij h and the lower one θij l, to deter-

mine whether the neuron fires or not. If the Uij is greater than

θij h, the neuron is fired and the output pulse Yij h = 1. On

the other hand, if θij l exceeds Uij , the neuron is also fired

and the output pulse Yij l = 1. To prevent the neuron from

being fired again, the higher dynamic threshold θij h will be

enlarged and the lower one θij l will be decreased. Otherwise,

the neuron would not be fired and the pulse generator would

output zero, namely Yij h = 0, Yij l = 0. The final output of

the neuron Yij is derived from a logical OR operation on Yij h

and Yij l. The above steps are constantly iterated until some

stop constrains are met. Equations (6)-(13) describe how each

neuron operates and is arranged in DTPCNN derived from the

Simplified PCNN model.

Fij [n] =
∑
k,s

MijksYks[n− 1] + Iij (6)

Lij [n] =
∑
k,s

WijksYks[n− 1] (7)

Uij [n] = Fij [n](1 + βLij [n]) (8)

Yij h[n] = Uij [n]− θij h[n− 1]

=

{
1 Uij [n] > θij h[n− 1]
0 Uij [n] ≤ θij h[n− 1]

(9)

Yij l[n] = Uij [n]− θij l[n− 1]

=

{
1 Uij [n] < θij l[n− 1]
0 Uij [n] ≥ θij l[n− 1]

(10)

θij h[n] = e−αTij h θij h[n− 1] + VTij h
Yij h[n] (11)

θij l[n] = e−αTij l θij l[n− 1] + VTij l
Yij l[n] (12)

Yij [n] = Yij h[n] ∨ Yij l[n] (13)

where n denotes the iteration times; i and j refer to the

pixel position in the image; M and W are the synaptic gain

strengths for the feeding inputs and the linking ones, respec-

tively; β is the linking coefficient of internal activity; αL,

αT are the attenuation time constants of Lij and θij , respec-

tively; VL , VT denote amplification coefficients of Lij and

θij , respectively. θij h and θij l are the threshold outputs of

the higher threshold regulator and the lower one, respectively,

and furthermore, θij h > θij l. Therefore, both of Yij h and

Yij l cannot be 1 synchronously.

4. THE PROPOSED DTPCNN SHADOW
DETECTION ALGORITHM

In order to verify the feasibility of the proposed model, this

paper uses the intensity of the image pixel as the external

source of the proposed DTPCNN. We first briefly introduce

the symbols that will be used in the DTPCNN shadow detec-

tion algorithm. F is the feeding input matrix, which saves the

intensity of the image pixel. In order to simplify the compu-

tation, weight matrices M and W are replaced by K, where

K is the 3 × 3 kernel that has 0 at the center and 1 for the

others. Gh, Gl are the high-threshold and low-threshold seg-

mentation matrix, respectively. Qh, Ql are the high-threshold

and the low-threshold quotient matrix, respectively. SD is

the matrix that is used to save the shadow detection result.

To lighten the calculation burden, Eqs. (11) and (12) are

simplified with two thresholds, Δh and Δl. N is the number

of iteration. The proposed DTPCNN shadow detection algo-

rithm is described as follows.

(1) Initialize the parameters and matrices as min = 0.004,

L = 0, U = 0, Y = 0. Normalize F as min ≤ F ≤ 1.

(2) L = Y ∗K, Uij = Fij(1 + βLij).
(3) If Uij > θij h,

Yij h = 1,

Gij h = θij h,

Qij h = F (i, j)/Gij h,

θij h = 100,

else

Yij h = 0,

θij h = θij h −Δh.

(4) If Uij < θij l,

Yij l = 1,

Gij l = θij l,

Qij l = F (i, j)/Gij l,

θij l = 0,

else

Yij l = 0,

θij l = θij l +Δl.

(5) Iterate (2) to (4) N times. SD = Qh +Ql.

In the above algorithm, i ranges from 1 to r, and j ranges

from 1 to w, where r and w are the height and width of the
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image.

5. EXPERIMENTAL RESULTS AND ANALYSIS

The developed method is compared with method [11], method

[12] and the conventional PCNN model. All experiments are

performed on the platform of Matlab R2013a. Three images

as shown in the first row of Fig. 4 are tested in the experi-

ments. The detection results are shown in Fig. 4: the second

row for method [11], third for method [12], fourth for the con-

ventional PCNN method, and last for the proposed algorithm.

The values of parameters depend on the scenes. In view of the

comparability and effectiveness of the test results, the associ-

ated parameters of PCNN model are chosen the same as the

values of the corresponding parameters of DTPCNN model.

Fig. 4: Images and shadow detection results of four methods:

3 images (1st row); detection results using method [11] (2nd

row), [12] (3rd row), PCNN (4th row) and the proposed DT-

PCNN (5th row).

Fig. 4 shows the proposed DTPCNN outperforming the

others. The black pack and black umbrella in the first im-

age,the black car and the grass in the second image, and the

dark trousers of the leftmost child in the last image are judged

as shadows by mistake due to the mechanism of single dy-

namic threshold of the PCNN shadow detection algorithm

(see the fourth row of Fig. 4). The same misclassifications are

shown in the second and third row. However, in the last row,

the misclassifications are significantly reduced, and the shad-

ows are more accurately extracted with the proposed double

threshold mechanism.

To compare the shadow detection performance of the

above methods, we use the rate of false shadow detection(ζ):

ζ =
FPs + FPn

TPs + FPs + FPn
(14)

where TPs and FPs denote the number of pixels of shadows

correctly detected and wrongly recognized as non-shadows,

respectively, while FPn is that of non-shadows detected in-

correctly as shadows. The smaller the value of ζ is, the better

performance the shadow detection method has. Table 1 lists

the results of shadow detection evaluation.

Table 1: Shadow detection evaluation: ζ (%)

Method image 1 image 2 image 3

Method [11] 48.49 73.78 31.72

Method [12] 71.30 88.02 35.71

PCNN 83.57 79.16 30.69

Our Method 26.90 3.69 15.54

6. CONCLUSION

Shadow regions whose intensity and hue fall in between those

of the scene and objectives are often viewed as non-shadows

by the single dynamic threshold of PCNN. Moreover, enti-

ties with similar or darker hue and intensity may be wrongly

classified as shadows. To address this problem, we propose

a Double-Threshold PCNN model including two different

dynamic thresholds that iteratively alter. The upper and lower

limits of detecting shadow regions are determined respec-

tively by an iteratively decreasing higher threshold and an

iteratively increasing lower one. The detection result of shad-

ows is obtained by a fusion of two detection components. The

proposed detection algorithm significantly reduces the false

detection of shadows in a single image where the color and

intensity of some non-shadow regions are close to or even

lower than those in shadow regions. The experimental results

verify that the proposed approach in this paper yields the best

performance among all approaches used in comparison.
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