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ABSTRACT

A novel template matching algorithm that can incorporate
the concept of deformable parts, is presented in this paper.
Unlike the deformable part model (DPM) employed in object
recognition, the proposed template-matching approach called
Deformable Template Matching (DTM) does not require a
training step. Instead, deformation is achieved by a set of pre-
defined basic rules (e.g. the left sub-patch cannot pass across
the right patch). Experimental evaluation of this new method
using the PASCAL VOC 07 dataset demonstrated substan-
tial performance improvement over conventional template
matching algorithms. Additionally, to confirm the applica-
bility of DTM, the concept is applied to the generation of
a rotation-invariant SIFT descriptor. Experimental evalua-
tion employing deformable matching of SIFT features shows
an increased number of matching features compared to a
conventional SIFT matching.

Index Terms— Template matching, deformable parts,
SIFT

1. INTRODUCTION

Template matching refers to a set of techniques by which im-
ages are compared with a template image to find highly sim-
ilar (matching) patches. The similarity of patches is typically
estimated in two major fashions, (i) pixel-to-pixel comparison
and (ii) transformed comparison. Sum of absolute difference
(SAD) [1] and correlation [2, 3] are techniques belonging to
the first category, and scale- and/or rotation-invariant match-
ing [4, 5] (allowing affine transform between two image tem-
plates) belong to the second category. However, less attention
has been paid to template matching via deformations that are
not explained by transformation. Previous studies [6, 7] intro-
duce elastic matching approaches by representing an image
using a hierarchical tree structure. However, the tree structure
includes the whole image, preventing the use of small-sized
template matching.

Felzenswalb et al. [8] introduced the concept of the de-
formable part model (DPM), which represents objects as a
collection of basic parts arranged in a deformable configura-
tion. This representation is intuitive because it can describe,
for instance, the different configurations of a person, whose
joints and limbs do not move consistently, or the minor in-

Fig. 1. Deformable Template Matching (DTM): The first
row shows two bicycle images taken from different view-
points. 2×2 decomposed sub-patches of bicycle images are in
the second row. In the third row, the sub-patches are matched
to regions in the other image with the most similar shape.

consistencies in the shape of similar objects, such as bicy-
cles composed of the same parts (wheels, handles, etc.) held
together by a similar but different frame. DPM represents
the state-of-the art in terms of object recognition task per-
formance, however, traditional DPM requires a training set
to learn deformation weights and cannot be directly applied
to template matching. Nevertheless, the concept of decom-
posing image patches into several sub-patches and allowing
deformation among the sub-patches is applicable to template
matching. In fact, it extends template matching beyond “ex-
act” matches, and expresses a deeper level of similarity than
existing matching algorithms. Highly similar patches can be
of extremely high value in object recognition or when match-
ing successive frames of an object in motion. Figure 1 shows
two images containing bicycles in different poses. Note that
placing sub-patches independently in the most similar loca-
tions of the other image leads us to conclude that the two im-
ages are from the same object.

This paper applies the concept of deformation to the task
of matching two images. Unlike other template matching
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approaches allowing for deformation, whose weights are
learned over training images [9], deformation of the location
of sub-patches in this paper is restricted by a basic rule: once
two sub-patches (e.g. on the left and right side of the image)
are defined, the center location of the first (left) patch cannot
pass across (be further right than) that of the second (right)
patch. The rule applies to left/right and top/bottom. Sub-
patches can be placed at any position satisfying this rule. The
deformable template matching (DTM) process splits each
image patch into several sub-templates and finds each patch
a best match in the other image (so long as it satisfies the
deformation rules through an iterative cost function). The
matching is also performed in the opposite direction by split-
ting the second image into sub-templates and applying them
to the first image. The overall matching score is a sum of the
matching scores of both sets of sub-templates.

This paper first evaluates deformable template matching
as a way of finding closely-matching image patches contain-
ing a specific object. To confirm the strength of DTM in im-
age processing applications, we also apply this concept to the
generation of the well-known SIFT descriptor [5], and com-
pare the performance against traditional means of generating
the SIFT descriptor. In Section 4, the performance demon-
strates that the proposed deformable template matching works
effectively.

2. DEFORMABLE TEMPLATE MATCHING

Let I1 and I2 be two input images, where I can be decom-
posed into n × m sub-patches, I(i,j)p , i = 1, 2, · · · , n, j =
1, 2, · · · ,m. The sub-patch Ip is matched at location t =
(x, y) in the other input image I ′ with a matching cost
c(Ip, I

′(t)), where I ′(t) has the same width and height
as the patch Ip. Assume that two sub-patches (of image
I1), I(i,j)1,p and I

(k,l)
1,p , are tentatively matched at location

t(i,j) = (x(i,j), y(i,j)) and t(k,l) = (x(k,l), y(k,l)) in the coor-
dinate frame of image I2. A deformation cost d(t(i,j), t(k,l))
is defined as follows:

d(t(i,j), t(k,l)) =


∞ if i > k, y(i,j) ≤ y(k,l)

or i < k, y(i,j) ≥ y(k,l)
or j > l, x(i,j) ≤ x(k,l)
or j < l, x(i,j) ≥ x(k,l)

0 otherwise.

(1)

The deformation cost d enforces hard constraints on the
relative positioning of neighboring sub-patches, as mentioned
in the previous section. Suppose that two sub-patches, Ip(1)
and Ip(2), originate as left and right (or up and down) in an
image. If these two patches are positioned in the other image
in a manner that violates the original relative positioning, d is
given a value of infinity.

The total matching cost ctot between I1 and I2 is calcu-
lated as below:

ctot(I1, I2) = cdtm(I1, I2) + cdtm(I2, I1), (2)

where cdtm is a score function of the deformable template
matching that decomposes the first image into sub-patches
and matches them to the second image. cdtm consists of two
terms: (i) the sum of the matching cost between each sub-
patch and the second image and (ii) the sum of the defor-
mation cost among sub-patches, minimized with respect to
t = [t(1,1), · · · , t(n,m)], as below:

cdtm(I1, I2) = min
t(1,1),··· ,t(n,m)

n∑
i=1

m∑
j=1

c(I
(i,j)
1,p , I2(t

(i,j)))

+
∑

i,j,k,l:|i−k|≤1&|j−l|≤1

d(t(i,j), t(k,l)).(3)

In our implementation, we employ HOG features [10] to rep-
resent the image and compute the matching cost c by using
the sum of product of the features.

Algorithm 1: Proposed matching algorithm
Input: I1, I2
Output: t, c

1 I1,p ← Decompose (I1, n, m);
2 t ← Initialization (I2, n, m);
3 s← 1;
4 while 1 do
5 told ← t;
6 c← 0;
7 for i=1 to n do
8 for j=1 to m do
9 [t(i,j), c(i,j)] ←

MinCdtm (t(i,j), s, t, I(i,j)1,p , I2);
10 c ← c+ c(i,j);
11 end
12 end

13 if told == t then
14 break;
15 end

16 s← s+1;
17 end

Algorithm 1 presents the implementation of cdtm compu-
tation. The location of sub-patches, t, are obtained by mini-
mizing the cost function given by Equation 2. The function
Decompose(I , n, m) decomposes an image I into n × m
sub-patches. Initalization(I2, m, n) is a function set-
ting the initial position of the sub-patches in the other image.
The initial patch center location t(i,j) = (x(i,j), y(i,j)) is cal-
culated as (b(i−1)×I2 width/nc, b(j−1)×I2 height/mc),
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i = 1, · · · , n, j = 1, · · · ,m. The function MinCdtm
searches t(i,j) minimizing cdtm in a range [x(i,j) − s x(i,j) +
s, y(i,j) − s y(i,j) + s], where s is a search area. The mini-
mization is achieved by increasing the search area s in every
iteration. If t is not changed, the process terminates.

3. DEFORMABLE SIFT MATCHING

To emphasize the applicability of deformable template match-
ing, we apply the concept in feature matching as well as tem-
plate matching. While template matching is for measuring
how similar given two templates are, feature matching is used
to find a transformation between two images by assuming one
image is transformed from other image in some fashion.

DTM can be used in matching any type of feature, thus
we modify the well-known SIFT descriptor by adding de-
formability to the existing rotation-invariant methods. The
SIFT descriptor consists of 4x4 cells, each of which collects
the magnitude of 8 gradients. The magnitude of gradients is
calculated after rotating the neighboring region around each
keypoint so that the dominant gradient of all keypoints faces
in the same direction. The similarity of two SIFT keypoints
are calculated as sum of product of their 128-dimensioned de-
scriptor. The proposed matching reconfigures 4 × 4 cells of
the descriptor to 2 × 2 sub-patches and applies deformable
template matching to compute the similarity between two dif-
ferent SIFT keypoints. Gaussian smoothing used in the tra-
ditional SIFT descriptor is not applied due to the variable lo-
cations of sub-patches, which allows direct matching of two
SIFT descriptors.

4. EXPERIMENTS

4.1. Comparison with Other Matching Techniques

Dataset and setting: The PASCAL VOC 07 image dataset [11]
was used to evaluate the proposed deformable template
matching against several existing techniques. However, we
did not follow the protocol of PASCAL VOC 07 because it is
intended for the task of object recognition, rather than tem-
plate matching. A single object patch in one of the images
is randomly selected from all of the object patches in the
dataset, cropped by annotated bounding boxes. Then, 100
positive and negative patches are randomly selected from the
same object category and different object categories, respec-
tively. This procedure iterates 100 times and in each iteration,
area under ROC curves (AUC) is calculated.
Baseline: First, SAD is used as the baseline. Since two
templates can have different sizes, matching via SAD is
performed in two ways: (i) transform one image so that
it is equally sized with the other image and compute SAD
(SAD1), and (ii) scan one image over other image to search
for the maximum matching score (SAD2). The matching
calculations are also performed in the opposite direction by

Target template
(class: cat) 

& Sub-patches

Top 20 scored templates

Target template
(class: bottle) 

& Sub-patches

Top 20 scored templates

Fig. 2. Qualitative analysis: The left-most figures are tar-
get templates (cat & bottle) and their 2×2 sub-patches are
shown below (or beside). Among 200 positive and negative
templates, the top 20 matching scored images are shown on
the right. The images boxed in orange are negative templates.

Table 1. Performance of DTM with various number of sub-
patches. (Mean and standard deviation of AUC)

# of sub-patches 2× 2 3× 3 4× 4
mean .6358 .6264 .6079
std .1258 .1486 .1485

switching the first and second templates with each other, and
the sum of the matching scores is computed in both direc-
tions to obtain the final score. As a second baseline, the
images are converted via HOG [10] features and the match-
ing score is computed by sum of product of HOG features
of two templates. HOG feature-based matching is performed
bi-directionally (HOG1 and HOG2), as described with SAD.
SIFT features are not used in this baseline comparison be-
cause without Gaussian smoothing SIFT shares the same
principle of exploiting gradient magnitudes and orientations
as HOG.

Figure 2 shows two randomly selected templates from the
object categories (cat and bottle), their 2 × 2 sub-patches,
and the top 20 best matching templates. Among the top 20
templates, negative templates are also included (eight for
cat , six for bottle) when using DTM. Note that using DTM,
the sub-patch containing the cat head (red box) is accurately
positioned over the other cat heads in the corresponding tem-
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Table 2. Comparison between DTM and baselines. (Mean
and standard deviation of AUC)

method SAD1 SAD2 HOG1 HOG2 DTM
mean .5430 .5419 .6178 .6150 .6358
std .1245 .1213 .1355 .1311 .1258

Table 3. # of inlier matching
conv. SIFT deform. SIFT

mean 153.4 223.9
std 21.54 24.54

plates. Table 1 evaluates matching performance of DTM
as the number of sub-patches is varied. DTM with 2 × 2
sub-patches works best among others due to the already
low-resolution of the templates. Table 2 compares the four
baselines and DTM. Based on these characteristics, DTM
outperforms all the baselines.

4.2. Evaluation for Deformable SIFT Matching

Data and setting: We use the “Lena” image to evaluate
the proposed deformable feature matching based on the
SIFT descriptor. The image is transformed with respect to
arbitrarily-selected rotation and scale along the x and y axes.
RANSAC [12] is employed to search for inliers and homog-
raphy between the original Lena image and the transformed
image. This process is performed 100 times. If homogra-
phy properly reproject the transformed image to the original,
more correct matchings (inliers) implies better matching.

Figure 3 shows the comparison between the deformable
SIFT matching (2nd row) and conventional SIFT matching
(1st row). Based on the projected image (right side), we can
see that both matching techniques find the proper homogra-
phy. However, deformable SIFT matching finds more inliers
than conventional SIFT matching. Table 3 summarizes mean
and standard deviation values for the multiple trials, demon-
strating that the proposed deformable SIFT matching finds
more properly-matching SIFT features than the conventional
SIFT descriptor. This implies that deformable SIFT matching
is a more reliable method for finding relationships between
two images.

5. CONCLUSION

This work presented a new template matching technique
called deformable template matching (DTM). Unlike other
template matching methods, DTM is able to account for
image or object deformations that are not caused by transfor-
mation, enabling a greater flexibility to find similar objects
or features. Although DTM is conceptually similar to the de-
formable part model (DPM) employed in object recognition,
no training is required to perform template matching. Instead,

Conventional SIFT descriptor (41 inliers)

Deformable SIFT descriptor (76 inliers)

Fig. 3. Deformable SIFT matching vs conventional SIFT
matching: First column shows matching inliers and second
column shows projected 2nd image by computed homography
through RANSAC. 2nd image is obtained by rotating the Lena
image by π/2 anti-clockwise and resize 0.5 w.r.t. x-axis.

a rule defining the relative locations of deformed sub-patches
allows for deformable matching.

DTM was experimentally tested and compared to various
baseline methods using images from the PASCAL VOC 07
dataset. A quantitative analysis of receiver operating char-
acteristic (ROC) indicated that DTM performed better on
average than baseline versions of sum of absolute difference
(SAD) and histogram of oriented gradients (HOG) methods
in matching image patches featuring objects of the same
category. Additionally, the deformable SIFT matching was
directly compared to a conventional SIFT matching. The
deformable SIFT matching produced more inlier matches,
suggesting better re-projection is possible with the proposed
method.
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