
SCANNED DOCUMENT ENHANCEMENT BASED ON FAST TEXT DETECTION

Yue Wangb, Jobin J Mathewb, Eli Saberab, David Larsonc, Peter Bauerc, George Kerbyc, Jerry Wagnerc

aDepartment of Electrical and Microelectronic Engineering, Rochester Institute of Technology
bChester F. Carlson Center for Imaging Science, Rochester Institute of Technology,

Rochester, NY, USA 14623;
cHewlett Packard Company – Color & Imaging, Boise, ID, USA 83714;

ABSTRACT

In this paper, we propose a Fast Text Detection (FTD)

algorithm to automatically identify the text and line art

pixels in scanned monochromatic and color documents for

enhancing text in printed documents. To simulate the

scanning operation, the input image is converted from the

RGB space to a Luminance-Chrominance space and is then

divided into individual strips. This is followed by a low pass

filtering operation on the input strips for removing high

frequency noise and to reduce processing time. An edge

detection scheme is then applied to the blurred strips to

generate corresponding edge-strips. The edge-strips are then

subjected to a morphological operation and an edge-based

adaptive thresholding simultaneously and the resulting two

output strips are merged together to obtain the final

candidate text plane. In the text enhancement operation, the

original image is first converted into LCH space and the

pixels corresponding to the detected text pixels are enhanced

via a clipping operation in the L and C channel. This

algorithm is highly efficient in terms of memory usage and

processing speed and is thus suited to run effectively in low-

cost embedded devices.

Index Terms— Text Detection, strip, enhancement,

scanners, edge based

1. INTRODUCTION

Image layout analysis is a fundamental principle in many

applications related to processing document images. For

example, extracting text pixels from images is used to

convert scanned documents into electronic files, also known

as optical character recognition (OCR). The extracted text

plane also provides an opportunity to enhance the image

quality in the printing process along with other applications

such as document tagging, keyword search, etc.

 Khedekar et al. [1] presents a top-down, projection-

profile based algorithm to separate text blocks from image

blocks. However, this approach lacks the ability to handle

non-rectangular shaped text blocks, sparse images and

horizontal lines.

 Erkilinc et al. [2] proposed a multiple-step analysis

algorithm to classify a scanned document into different

regions such as text, images, etc. This algorithm uses several

image processing techniques such as the wavelet transform,

Markov random field based segmentation and K-means

clustering. Although this methodology averages an 89%

accuracy, the computational cost is relatively high.

 In [3, 4, 5], several texture-based approaches are used

for detecting and separating text pixels from images. These

approaches generally fall into two categories: pixel-based

and block-based. The papers [6, 7] have proposed SVM

classifier and Neural network training scheme to segment

text from video frames.

 Although a great deal of text detection algorithms have

been developed, it is still a challenge to perform text

recognition in real-time when hardware resources are limited.

For instance, in a real-time embedded scanning device,

memory resources are always limited, which means only a

part of image could be stored at a time. Thus, an analysis on

a full document page [2] may not be a practical option in

these scenarios. Another constraining factor is the increasing

complexity of computation under limited resources which is

directly linked to the speed/execution time.

 Prakash et al. [8] proposed a method based on Discrete

Cosine Transform (DCT) to localize text in digital videos.

Pietikainen et al. [9] provided a texture-based approach

based on the edge information. Both these approaches have

shown a reasonable performance in identifying the text while

maintaining a reasonable computational complexity.

However, the disadvantage of these methods is that, some

high-frequency regions (images) in the document are

identified as text. For the purpose of enhancement, such

false-positive regions might lead to some visible defects in

enhanced output.

 This paper proposes a strip-based methodology to

identify text and line art pixels from monochrome or color

documents which are scanned at 300 DPI. The generated

output text plane will be used to enhance the text quality in

the printing process. Due to the low memory usage and fast

1961978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

processing time, this algorithm can be easily be integrated

onto a real-time embedded system such as those found in all-

in-one scanners/printers. After testing the algorithm on a

low-cost embedded device, the processing speed was found

to be around 30 to 40 pages per minute.

 The algorithm details will be described in section 2.

Results and enhanced output images are discussed and

presented in section 3. Finally, conclusion are drawn based

on these results in section 4.

2. METHODOLOGY

The primary objective of the Fast Text Detection (FTD)

algorithm is to identify text and line art pixels from scanned

documents for the purpose of text enhancement. Considering

the scanning operation in real-time, the lines/rows of a page

are read by sensors one at a time and hardware can only

store several lines of the input page. Therefore, the

algorithm must be strip-based and causal in nature where,

the system can process each strip individually and

independent of other strips. The flowchart of the proposed

FTD algorithm is shown in Figure 1.

Fig. 1 Flowchart of FTD algorithm

2.1. Preprocessing

To simulate the scanning operation, input images needs to be

converted from RGB to LCH color space. Since the edge

information is primarily present in the Luminance plane,

only the L channel is used in the FTD algorithm, while

chrominance channels are not.

 The Luminance plane is then divided into individual

strips of specific size. The size of each strip is selected

carefully in such a way that, it is neither too small to convey

any relevant text information nor too large to surpass the

hardware buffer size. For the purpose of identifying text up

to 24pts in 300dpi documents, we select and extract 128

lines for each strip from the full page document. Also, to

avoid any errors caused by boundary alignment, each strip

includes 10 lines from the previous and following strips

respectively. For the top lines of the first strip and the

bottom lines of the last strip a replicate padding is applied.

2.2. Low-pass Filtering

To reduce the computational complexity and eliminate high-

frequency noise, the input strip is down sampled by a factor

of 2 followed by applying a 3 by 3 average filter to it.

Implementing a 2-D filtering by the method of convolution

or Fourier transform might lead to an extra computational

cost. Thus, to optimize this filtering process, we perform

average filtering via the integral image technique.

 Integral image, also known as summed area table is a

highly effective and fast way to calculate the sum of values

in a rectangular data structure which was introduced by

Viola and Jones in [9]. The value at any location (x, y) in the

integral image is defined according to the follow equation:





yyxx

yxiyxI
','

)','(),(, (1)

 where I(x, y) is the integral image and i(x’,y’) is the

original image. Once the integral image is generated, the

sum of a rectangular region with upper left corner ）y（x 11 ,

and lower right corner ）y（x 22 , is calculated via the

following equation:

)1,1(),1(

)1(),(),(

1121

1222

2

1

2

1




 

yxIyxI

，yxIyxIyxi
x

xx

y

yy
(2)

 Finally, the average filtered image is obtained by

dividing the sum of each rectangular region by its size.

While the 2-D convolution method is complex and requires

multiple passes, the integral image method is efficient and

requires only one pass over the original image.

2.3 Edge Detection

To achieve better hardware performance, we avoid using

any edge detection operators such as Sobel or Prewitt. In the

FTD algorithm, edge detection is implemented by

combining the horizontal and vertical gradient components

together, thus generating a binary edge map.

2.4 Morphological Operation

Preprocessing

Low-pass

Filtering

Edge Detection

Adaptive

Thresholding
Morphological

Operation

Image Merge

Output

1962

Text pixels in the edge map could be considered as small

regions which are closed by boundaries. To enlarge these

regions, an image closing operation with a 5 by 5 structuring

element size is applied to the edge map. The output of the

morphological operation might include regions which are

non-text or false-positives. These false-positive regions are

eliminated in the next step, when the morphological output

is merged with the output from adaptive thresholding

module.

2.5 Edge-Based Adaptive Thresholding

An edge-based adaptive thresholding technique (EBAT) is

used in conjunction with the morphological operation

module, which is intended to increase the accuracy of

detected text plane.

 Since majority of the text information in a document can

be associated with edges, the pixel intensities corresponding

to these edges is first identified and then used to estimate the

intensity of text pixels in this specific region. Therefore, the

basic concept of EBAT is to calculate the average intensity

of text pixels in a region via an edge map followed by

setting the average intensity value as the local threshold.

This operation is described by the followed equation:





Eyx

yxI
N

F
),(

),(
1

 (3)

 where E represents the edge pixels, I(x, y) represents the

intensity value at the location (x, y), and N is the number of

edge pixels present in this region.

 To handle the background variations across the whole

page, each individual input strip is divided into small blocks.

A local threshold is calculated for each block using equation

(3), which is used to threshold and convert these blocks to

binary blocks. Considering the cases with light color text on

dark color background, the total percentage of text pixels

present in each thresholded block is calculated. We assume

that text pixels are always the minority in a block, and if the

percentage of text pixels in the thresholded block exceeds 50

percent, a NOT operation is applied to the thresholding

block.

 EBAT operation can effectively distinguish foreground

from background (non-text). The foreground primarily

represents text and line art pixels, but it may also contain

features and high frequency regions from non-text regions.

2.6 Image merge

The final step of the FTD algorithm is to merge the output

maps obtained from morphological and EBAT modules and

thus generate the final text plane. The morphological plane

and the EBAT plane constitutes the detected text regions

along with some false positives. Since the false positives in

these two binary text maps will be present in different

locations, an AND operation between the two text planes

can yield a final text plane with minimal false positives.

3. RESULTS & ENHANCEMENT EXPERIMENT

3.1 FTD Results

The proposed FTD algorithm is mainly used for document

enhancement in scanning/printing and the primary goal in

terms of false positives is to ‘fail gracefully’. This concept

stems from the fact that the false detection of a group of

pixels in the document can result in a poorly enhanced

output image. To this effect, emphasis was placed on

minimizing the enhancement artifacts caused due to false

classification.

(a) (b)

Fig. 2: (a) Original images, (b) FTD output text planes

 The results of the proposed FTD algorithm on two

scanned documents are shown in Figure.2. To meet the

requirement of ‘failing gracefully’, our strategy is to include

text pixels in its wholeness and thus avoiding any partially

detected text lines/pixels. Meanwhile, the FTD algorithm

labels strong edges and high frequency details from non-text

1963

regions as false-positives. During the enhancement

procedure, those regions will be enhanced as text as well.

Since they represent edge components and line-art features,

the visible flaws that will show up in the enhanced images

will be minimal

 The images utilized for testing are obtained from a

scanned document database provided by Hewlett Packard.

We picked 14 images from this database as a subset for

benchmarking and the ground truths were generated

manually. This subset includes different documents from

simple mono-text-documents to color-text documents

containing images and varying backgrounds. The

performance of the algorithm was determined by comparing

the number of text pixels in the detected image with that of

the corresponding ground truth. According the test, the

proposed FTD algorithm has accuracies in the high 90s. The

average accuracy of the algorithm on both color and mono

images is 96.95%. And the false-positive rate is no higher

than 4%. Numerical test results of the images in Figure 2 are

shown in Table 1.

Image Name False Positive (%) Misses (%) Hits (%)

Scotch 1.61 0.43 99.56

Boat 3.07 1.53 98.46

Table 1: Test results for FTD

3.2 Enhancement Experiment

The accuracies of the FTD algorithm indicates that it meets

the requirement of “failing gracefully” and is highly

effective for document enhancement. The image

enhancement operation is accomplished in two steps: first,

the source image is converted from RGB to CIE LCH color

space. After that, in the luminance and chromatic channels,

linear clipping operation is applied to the pixels identified as

text pixels. Finally, the image in CIE LCH space is

converted back to RGB color space to render the enhanced

image.

(a) (b) (c)

Fig. 3: (a) Original Image, (b) Aggressive Enhancement,

(c) Milder Enhancement

 To evaluate the enhancement quality, enhancements at

two levels with different clipping values are applied to the

original image. According to the results shown in Figure 3,

with aggressive enhancement, visible artifacts mostly show

up in the false positive regions. With milder enhancement,

these artifacts become barely noticeable. Another example

is shown in Figure 4 to illustrate that milder enhancement is

still effective depending on the content of the document

being enhanced.

3.3 Hardware Performance

To test the performance, the FTD algorithm is simulated in

the C programming language on a PC environment and also

on a BeagleBoard, the latter of which simulates running on a

low-cost embedded device. The BeagleBoard has an

AM335x 1GHz ARM Cortex-A8 processer and a 512MB

DDR3 RAM. During the test, the FTD algorithm processes

300 dpi full page documents at 35-40 pages per minute

(PPM). Considering other tasks running in parallel, the

proposed algorithm has the ability to handle no less than 10

pages per minute in a real product.

 (a) (b)

Fig. 4: Milder Text Enhancement Result. (a) Original

Image, (b) Enhanced Image.

4. CONCLUSION AND FUTURE WORK

The proposed FTD algorithm has the ability to identify text

and line art pixels in documents scanned at 300 DPI and

provide text planes for document enhancement. Based on

our tests, few of the strong edges in the original documents

are classified as text, but this does not contribute to any

enhancement errors since the false-positive regions are

generally unnoticeable after the enhancement. Additionally,

the case of black and color text detection is tackled

simultaneously in the same algorithm, with both cases

having accuracies in the high 90s. Furthermore, this

algorithm is robust for non-Latin languages, such as Chinese

characters and Japanese Kanjis.

 Currently, the proposed algorithm still has some

difficulties to detect text on low contrast or strong

background documents. It also suffers from few missed

detections with thick strokes and large fonts. These

shortcomings could be improved by using some hierarchical

analysis and more sophisticated edge detection schemes.

5. ACKNOWLEDGEMENT

This research was supported by Hewlett Packard Company

in collaboration with the Department of Electrical and

Microelectronic Engineering at the Rochester Institute of

Technology.

1964

6. REFERENCES

[1] S. Khedekar, V. Ramanaprasad, S. Setlur and V.

Govindaraju, “Text-Image Separation in Devanagari

Documents,” In Proc.7th International Conference on

Document Analysis and Recognition, ICDAR’03, pp. 1265-

1269, 2003.

[2] M.S. Erkilinc, M. Jaber, E. Saber, P. Bauer and D.

Depalov, “Text, photo, and line extraction in scanned

Documents,” Journal of Electronic Imaging, Vol. 21(3), pp.

1265-1269, July 2012.

[3] D.F. Dunn and N.E. Mathew, “Extracting color

halftones from printed documents using texture analysis,”

Pattern Recognition, 33(3), pp. 445-463, 2000.

[4] A.K. Jain and Y. Zhong. “Page segmentation using

texture analysis”. Pattern Recognition, 29(5):743–770,

1996.

[5] M. Murgu´ia. “Document segmentation using texture

variance and low resolution images”. In Proc. of 1998

IEEE Southwest Symposium on Image Analysis and

Interpretation,Tucson, Arizona, USA, pages 164-167, 1998.

[6] K. Y. Jeong, K. Jung, E. Y. Kim and H. J. Kim, “Neural

network-based text location for news video indexing”. In

Proc. ICIP, pp 319-323, 1999.

[7] K.I.Kim, C.S.Shin, M.H.Park, and H.J.Kim. “Support

Vector Machine – based text detection in digital video”. In

proc.IEEE signal Processing Society Workshop, pages 634-

641, 2000.

[8] S. Prakash and M. RaviShankar. ”Multi-Oriented Video

Text Detection and Extraction using DCT feature extraction

and Projection based rotation calculation”. Advances in

Computing, Communications and Informatics (ICACCI),

pages 714-718, 2013

[9] M. Pietikainen, O. Okun. “Edge-based method for text

detection from complex document images”. In Proc. 6th

international conference on Document Analysis and

Recognition (ICDAR), pages 286-291, 2001.

[10] P. Viola and M. Jones. “Robust Real-time Object

Detection”. Second International Workshop on Statistical

and Computational Theories of Vision-Modeling, Learning,

Computing and Sampling. Vancouver, Canada, July 13,

2001.

[11] R.C. Gonzalez, and R.E. Woods, Digital Image

Processing, Pearson Prentice Hall, 2008

[12] K.N. King, C Programming, A modern Approach,

W.W. Norton, 2008

1965

