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ABSTRACT

Saliency detection has been a significant problem in computer
vision and helpful to object detection. In this paper, we pro-
pose a new computational saliency detection model under the
Bayesian framework. First, central bias and the reweighting
of the salient regions in the convex hull are applied to guide
the prior map. Then, multi-scale for superpixels is proposed
to detect objects with various scales. At last, the Bayes formu-
la is adopted to obtain the final saliency map. Experimental
results on a standard database show that the proposed model
outperforms state-of-the-art methods.

Index Terms— Saliency detection, Bayesian framework,
central bias, reweighting, multi-scale

1. INTRODUCTION

Human vision system can quickly pick out interesting parts
from a complicated scene. Similar vision system also enables
animals to efficiently find prey and avoid predators, which is
important for them to survive. Due to this, a lot of researcher-
s have made efforts to explore the mechanism of attention.
Salient detection aims to find the parts of an image that attract
the most attention, and it can be applied to many research ar-
eas in image processing, such as image segmentation [1], ob-
ject recognition [2], content based image retrieval [3] and so
on.

Generally, saliency detection models are categorized as
bottom-up and top-down approaches. Bottom-up method-
s [4, 5, 6] are data-driven, fast and pre-attentive, while top-
down methods [7, 8] are goal-driven, slow and entail super-
vised learning with class labels.

Over the past decade, most researchers have paid attention
to bottom-up methods. Bottom-up saliency methods main-
ly measure saliency by calculating contrast (local or global)
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Fig. 1. Saliency maps. From top to bottom: input image,
saliency map of [13], our saliency map.

or rarity of features over the entire image, and rely on pri-
or knowledge. Different saliency models use different pri-
or knowledge. In [4], Itti et al. focus on color and orien-
tation, and adopt center-surround contrast to find salient re-
gions. Bruce et al. [9] compute saliency by self-information
measurement based on local contrast. On the contrary, Cheng
et al. [6] use global contrast based on region contrast to detect
visual saliency. In this way, we can usually detect the whole
salient object. Perazzi et al. [10] improve [6]

′
s work and pro-

pose a linear-time computation strategy. Fourier spectrum is
also a novel method used to detect visual saliency [11]. Wei
et al. [12] use geodesic distance to detect salient objects.

Rahtu et al. [14] use a Bayesian model based on sliding
window to detect the salient object. Xie et al. [13] combine
the prior map obtained from convex hull and the observation
likelihood in the Bayesian framework to generate the salien-
cy map and achieve the best performance among the state-
of-the-art center-surround methods. And the Jing et al. [15]
promote Xie et al.

′
s model with a boundary based prior map

and a soft-segmentation based convex hull. However, there
are some shortcomings. First, the salient regions will often be
in the center of the image, which is called central bias being
neglected. Second, the saliency cluster makes a big differ-
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ence to the prior map. The regions in the saliency cluster are
allocated with the same weight or mainly dependent on the
boundary, which will inevitably lead to an inaccurate map.
Third, the framework may fail when the scales of the objects
vary.

To overcome the above shortcomings, we propose a
saliency detection model based on central bias, reweighting
the salient regions in the convex hull and multi-scale to im-
prove the performance. The main contribution of our model
are twofold: (1) We use central bias and reweighting salient
regions in the convex hull to obtain a more accurate prior
map. (2) The multi-scale is used to detect salient objects with
different scales. Comparison with the other methods shows
that our model is effective. Fig.1 shows some comparison
samples with [13].

The rest of the paper is organised as follows. In Section
2, we discuss about our model in detail. Experimental results
and discussions are presented in Section 3. Section 4 con-
cludes this paper.

2. OUR MODEL

The previous work of saliency detection based on Bayesian
law [13, 15] is first presented in Section 2.1, and we will talk
about the details of our approach in the following subsections.

2.1. Bayesian Probability

In [13, 15], Bayes formula is adopted to obtain a saliency
map. Firstly, Harris Point is used to create a convex hull
which locates the object coarsely. Secondly, the regions in
the convex hull are divided into two clusters based on super-
pixels. Then, they take one of the clusters as the preliminary
location of the salient region and calculating the observation
likelihood. Finally, saliency detection problem is formulated
as a Bayesian inference problem for estimating the posterior
probability at pixel/location l:

p(s|l) = p(s)p(l|s)
p(s)p(l|s) + p(b)p(l|b)

(1)

p(b) = 1− p(s), (2)

where p(s) and p(b) are the prior distribution of the salient
regions and background respectively. And p(l|s) and p(l|b)
represent the likelihood of observations accordingly.

The method of [13] can detect salient regions effective-
ly. However, as has been shown in the introduction, there
are some shortcomings. To improve the method, we propose
the central bias and reweighting of the salient regions in the
convex hull to gain a better prior saliency map (Section 2.2).
Also, multi-scale is used to detect objects with multiple scales
(Section 2.3).

2.2. Enhanced Prior Map: Central bias and Reweighting

The saliency cluster makes a big difference to the prior map.
In [13], the prior map will be inaccurate when the regions
in the saliency cluster have the same weights. In [15], Jing
et al. propose a boundary based prior map to improve the
performance for coarse location of saliency. But in this way,
it is the edge that is highlighted rather than the whole region .

It is common sense that the more salient regions should be
assigned with higher weights. Therefore a reweighting mech-
anism is proposed.

In [13, 15], two factors are considered for evaluating the
saliency: the color differences between image superpixels,
and their spatial distances. With the increasing of the dis-
tances, the saliency of the superpixel will be decreased. Fur-
thermore, as stated in [16], the distance of each superpixel
from the center of the image should be considered in the e-
valuation of the saliency. The farther a superpixel is from the
center, the less salient it will be accordingly.

Suppose that there are N superpixels in the convex hull.
By integrating the elements of color difference, spatial dis-
tance and central bias, the preliminary saliency of the super-
pixel i is defined as follows:

si
0 =

1

N
(sali

0 +
1

N − 1

N∑
j=1

δ(j, i)salj
0), (3)

where the function δ is a Kronecker delta function, and
sali

0 is defined as:

sali
0 =

N∑
j=1,j ̸=i

ω1(i)
ω2(j)

dc(rj , ri) + λds(rj , ri)
, (4)

where dc(rj , ri) and ds(rj , ri) represent the color and spatial
distances between the j-th and the i-th superpixel, and λ is a
tradeoff between color distance and spatial distance. ω1(i) is
the term we proposed according to the central bias (defined as
Eq. 5) and ω2(j) is the weighting term.

ω1(i) = exp(−DistToCenter(i)/θ2), (5)

where DistToCenter(i) is the spatial distance between the
center of superpixel i and the center of the original image, and
θ controls the intensity of spatial weighting.

In Eq. 4, besides the weight term ω1(i) representing the
bias to the center of image, ω2(j) is the second term indicat-
ing the weights of the regions in the convex hull. At first, we
set:

ω2(j) = 1, (6)

It is apparent that the value si
0 should be high when the

superpixel i tends to be salient. Then, we update ω2(j) using
sj

0. We recalculate the saliency of superpixels as follows:

sali =
N∑

j=1,j ̸=i

ω1(i)
sj

0

dc(rj , ri) + λds(rj , ri)
, (7)
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si is obtained from Eq. 3 and Eq. 7 as the final saliency
value for superpixel i by replacing sali

0 with sali. Then the
result si is normalized to the range [0,1], and this new value
is denoted as p(s) and used as the prior distribution in the
Bayesian framework.

However, it can extract more information if multi-scale
superpixel based method is performed on the existing result.
So we propose a superixel based multi-scale method as fol-
lows.

2.3. Multi-scale superpixel based method

Though multi-scale for superpixels has been used in [17],
there are some differences in our model. A good saliency
map should emphasize the pixels with high responses, while
those pixels with low responses should be suppressed.

To account for this property we suppress any saliency val-
ue below a certain threshold and strengthen any saliency value
above another threshold, and sr is the saliency value at scale
r:

sr =

{
0, sr ≤ α
1, sr ≥ β

, (8)

where α has a small value, such as 0.05, and β has a big value,
which equals 1− α.

And then we use the average saliency value of several s-
cales as the saliency value of one pixel:

s =
1

R

R∑
r=1

sr, (9)

where s is the average saliency value, and R is the number of
scales.

2.4. Observation Likelihood

Following the work of [13], we compute the observation like-
lihood in the convex hull. Suppose the salient regions and
the background histograms in the CIELAB color space are
Sl, Sa, Sb and Bl, Ba, Bb respectively. The color features of
a pixel l are ll, la, lb. Then the observation likelihood is cal-
culated as:

p(l|s) =
∏

i∈{l,a,b}

Si(li)

NS
(10)

p(l|b) =
∏

i∈{l,a,b}

Bi(li)

NB
(11)

where we suppose that the features in L,A,B space are inde-
pendent of each other, and NS and NB are the number of bins
in and out of the convex hull.

And p(s), p(l|s), p(l|b) can be used to obtain p(s|l) with
Eq. 1 and Eq. 2.

3. EXPERIMENTS AND COMPARISON

We evaluate our method quantitatively on the 1000-image
public dataset [5], which is a subset of the MSRA dataset.
Instead of using a rectangle to bound the salient object, accu-
rate human-marked labels are provided as ground truth in this
1000-image dataset.

As to the parameters setting, we choose to scale the image,
and the number of the superpixels are 50, 100, 200, 400, and
800. The tradeoff parameter λ of superpixels is set to 1.0
empirically to balance the color feature and the spatial feature.
Besides, we set θ2 = 1000.

3.1. Evaluation Metrics

We evaluate our method by precision, recall and F −
measure. The precision is the percentage of salient pixels
correctly detected to all the pixels of extracted regions. And
the recall is the percentage of salient pixels correctly detect-
ed to the ground truth. Then, we use the average precision
and recall to compute the F −measure as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(12)

where we set β2 = 0.3, following [5].
When comparing with other methods, we follow [5, 6, 10,

18] to use an adaptive binarization threshold Tα to binarize
the saliency maps obtained by other methods before calculate
Fβ . The threshold is set as proportional to the mean saliency
of the image consistently:

Tα =
2

W ×H

W∑
x=1

H∑
y=1

S(x, y) (13)

3.2. Effectiveness of Our Mechanism

There are two main improvements compared to the work of
[13]. The first one is the use of central bias and reweighting
salient regions in the convex hull to obtain a more accurate
prior map. The second is the utilization of the multi-scale to
improve the accuracy.

3.2.1. Validation of central bias, reweighting and multi-scale

To demonstrate the effectiveness of the central bias, reweight-
ing and multi-scale mechanism, we compare our result-
s with other mechanisms by the precision, recall and
F −measure.

In Table 1, we use XL [13] as baseline and add different
ingredients to evaluate performance, in which C, R stand for
central bias and reweighting as mentioned in Section 2.2, and
M stands for multi-scale as mentioned in Section 2.3.

The F −measure of our approach is 0.8331. When the
central bias is neglected, the F − measure decreases from
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Fig. 2. Saliency detection results of different methods. From left to right:(a)original images, results produced using (b)IT
method, (c)SR method, (d)FT method, (e)AC method, (f)XL method, (g)LRM method, (h)our method and (i)ground truth.

Table 1. The Precision, Recall, F −measure of different
mechanisms.

Method Precision Recall F-measure
XL 0.8035 0.8029 0.8034

XL+R+M 0.8362 0.8034 0.8284
XL+C+M 0.8319 0.8053 0.8256
XL+C+R 0.8223 0.8037 0.8180

Ours(XL+C+R+M) 0.8395 0.8125 0.8331

0.8331 to 0.8284, the same as reweighting and multi-scale
term. The comparison of the different mechanisms in our
method validate the effectiveness of the three terms.

3.2.2. Comparison with other methods

On the MSRA-1000 dataset [5], we compare our method with
other state-of-the-art approaches, including contrast-based
approaches (FT [5]), center-surround (IT [4]), color contrast
(AC [19]), Bayesian-based (XL [13]), spectrum-based (SR
[11]), and the one with low rank matrix recovery (LRM [18]),
most of which were proposed recently. To evaluate these
methods, we use the results from the original authors and the
codes are available online.

Fig. 2 shows a few visual results of the proposed method.
Overall, the results demonstrate that the proposed model out-
performs the state-of-the art methods.

We test our method and other methods mentioned above
on the 1000 images, and the average precision, recall and
F −measure are shown in Fig. 3.
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Fig. 3. Average precision, recall and F-measure on the 1000-
image dataset. F-measure of the proposed method achieves
the best.

4. CONCLUSION

In this paper, we propose an improved central bias, reweight-
ing and multi-scale based Bayesian framework for the salien-
cy detection. The central bias and reweighting of the salient
regions in the convex hull are applied to guide the prior map.
The multi-scale is used to detect objects with multiple scales.
The Bayesian framework is adopted to integrate the prior map
and observation likelihood map for a good saliency map. The
experiments on the public dataset show that our approach can
effectively improve the prior map and detect multi-scale ob-
jects.
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