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Abstract—In this paper, a novel patch-wise saliency detection
algorithm is proposed based on Principal Component Analysis
(PCA). As a powerful statistical procedure in data analysis, PCA
are fully exploited to convert color space and produce compact
patch representation. Specifically, images are first converted to
linearly uncorrelated channels and divided into non-overlapped
patches. Then the patches are represented by the coefficients of
principal components using PCA analysis. Based on the compact
representation of patches, two types of distinctiveness are intro-
duced: center-surround contrast and global rarity. Experimental
results demonstrate that the PCA-based color space conversion
and patch representation can improve the accuracy of human
fixations prediction, and the proposed algorithm outperforms the
mainstream algorithms on predicting human fixations.

Index Terms—Saliency detection, Principal Component Anal-
ysis (PCA), Center-surround, Rarity.

I. INTRODUCTION

Visual attention has been extensively studied recently due to
its wide applications in computer vision, contrast enhancement
and video compression [1]–[3]. Numerous saliency models
have been proposed by psychologists, neurophysiologists and
computer scientists to imitate human visual attention. Accord-
ing to the motivation of inferring visual attention, the saliency
detection models can be categorized into bottom-up models
and top-down models. Top-down models are task-driven while
bottom-up models are data-driven and more related to the
nature of human visual system. So we focus on bottom-up
model in this paper.

Although there is no consensus on the mechanism of human
visual system, it is widely accepted that human tends to focus
on distinct regions that stand out from the entire image. Based
on this motivation, many researchers have proposed various
saliency models to estimate visual saliency [4]–[19]. Despite
the variety in existing saliency detection models, they all deal
with the following three key issues: color space, visual units
(pixel-wise or patch-wise) and features, and distinctiveness
definition.

Color space that comes along with color images has been
widely researched in the past years. Many image processing
algorithms operate on separate color channel and fuse the out-
put of each channel either uniformly or non-uniformly. When
these methods perform on redundant color space (e.g., RGB),
over-emphasis on redundant information may be caused. Even

though LAB color space reduces the correlation from a statis-
tical point of view, it does not decorrelate specific images.

Patch-based methods, which have been widely used in
literatures, have intrinsic advantages over pixel-based methods
for saliency detection problem. First, saliency is a region-based
concept since single pixel with high distinctiveness can not be
captured. Second, patch-based methods process the patch as
a whole. They always have lower computational complexity,
which is desired for the pre-processing procedure of high-level
tasks such as image understanding. Therefore, patch-based
method is used in the proposed algorithm and patch representa-
tion comes as an intrinsic problem. Direct representation using
pixel values introduces noises and neglects the intrinsic spatial
correlations among patches. In [15], dimensionality reduction
is adopted for co-similarity matrix, which is equivalent to
a PCA representation of image patches. In our paper, we
formulate a compact and informative representation of patches
directly from PCA point of view. Principal components are
extracted to represent each patch and the dimensions corre-
sponding to noises are thrown away to make the representation
more effective.

The last key issue associated with a saliency detection
algorithm is how to define distinctiveness. Different definition
of distinctiveness results in different algorithm. A commonly
used definition is center-surround contrast [7]. Large contrast
between center and surrounding regions indicates highly in-
formative regions, hence, attracting more attentions. Another
type of distinctiveness is defined as global rarity [4], [12]. A
patch with features that rarely appear over the entire image
is believed distinct and draws more attentions. As pointed out
by [5], [9], center-surround contrast and global rarity work
complementarily for saliency detection of images.

In this paper, we propose a patch-wise image saliency de-
tection algorithm using PCA analysis. As a powerful statistical
procedure, PCA plays an important role throughout the pro-
posed scheme. More specifically, the RGB color space is first
transformed into uncorrelated color space where correlations
among different channels are discarded through PCA analysis.
Then, the image of each channel is divided into patches and
the principal components of each patch are extracted as patch
features based on PCA. With such a compact patch representa-
tion, visual saliency is measured by patch distinctiveness both
locally and globally. Local distinctiveness focuses on center-
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Fig. 1: Framework of the proposed algorithm.

surround contrast while global distinctiveness deals with rarity
of features, i.e., the coefficients of principal components.
Finally, the saliency maps are normalized and fused together.
The framework of the proposed algorithm is summarized in
Fig. 1. As shown in the figure, the power of PCA is fully
exploited to make a good prediction of patch-wise saliency.

The remainder of this paper is organized as follows. The
linearly uncorrelated color space conversion using PCA is
presented in Section II. Section III proposes a compact patch
representation using PCA analysis. Section IV presents two
complementary operations to measure distinctiveness. The ex-
perimental results are illustrated in Section V. Finally, Section
VI concludes this paper.

II. COLOR SPACE DECORRELATION USING PCA

Let I be a RGB image represented by a M × N × 3
matrix. If R, G, and B components are regarded as three
variables associated with each pixel, I can be seen as M ×N
observations. Since PCA is mathematically defined as a proce-
dure to transform correlated variables to linearly uncorrelated
variables, it offers a good solution to find the desired color
space.

Reshape each channel of I into a row vector and subtract
the mean for each channel, we have X = [xr,xg,xb]

T , where
xc = vec(C)−C, (c, C) ∈ {(r,R), (g,G), (b, B)}. vec(·) and
· are the vectorization and average function. The covariance
matrix of X is:

COV(X) =
1

MN − 1
XXT . (1)

According to linear algebra, the 3 × 3 symmetric matrix
COV(X) can be orthogonally diagonalized as COV(X) =
VXΛXV

T
X , where ΛX = [λ1X , λ

2
X , λ

3
X ] is a diagonal matrix.

Let the TX = V T
X be the transformation matrix, Y = V T

XX ,
we have

COV(Y ) =
1

MN − 1
Y Y T (2)

=
1

MN − 1
(V T

XX)(V T
XX)T

=
1

MN − 1
V T
XXX

TVX

= V T
X VXΛV T

X VX

= ΛX .

Obviously, the transformed color channels of Y are linearly
uncorrelated. Finally, Y is reshaped into a M ×N × 3 matrix
Idecorr corresponding to original image I .

III. PATCH REPRESENTATION USING PCA

Given an image Idecorr (M × N × 3) in the proposed
uncorrelated color space, we extract non-overlapped patches
of size k×k for each channel. So there are L = bM/k×N/kc
patches in each channel. Reshape the L patches in a k2 × L
matrix P0 where each column is a sample of observation,
i.e., a vectorized patch. Subtract the average patch value from
each column of P0, we have P = [p1,p2, · · · ,pL] where pi

is the normalized patch. Similar to color space conversion,
the principal components of patches are extracted using PCA
analysis.

Let COV(P ) be the covariance matrix of P , it can be
orthogonally diagonalized as COV(P ) = VP ΛPV

T
P . ΛP =

[λ1P , λ
2
P , · · · , λk

2

P ] is a diagonal matrix and we assume that
λ1P > λ2P > · · · > λk

2

P . If the transformation matrix TP
equals V T

P , the transformed patches are Q = TPP = V T
P P =

[q1,q2, · · · ,qL]. Similar to equation (2), the covariance matrix
of Q is the diagonal matrix ΛP . Therefore, the transformed
patches qi are linearly uncorrelated. The variance of each
component is determined by diagonal values in ΛP . To make
balanced operation on each component, Q is further normal-
ized as

NQ = Λ−0.5
P ∗Q. (3)

Suppose nqi = [nq1i , nq
2
i , · · · , nqk

2

i ] is the i-th column of
NQ. nqji is the coefficient of the j-th principal component
for the i-th patch. For robust and compact representation,
we extract the first K principal components, i.e., K most
important components. Thus,

ÑQ = [ñq1, ñq2, · · · , ñqL], (4)

where ñqi = [nq1i , nq
2
i , · · · , nqKi ]T is the normalized compact

representation for the i-th patch pi. Since PCA analysis is
applied on the entire image, ñqi is globally unified represen-
tation of pi. Therefore, it is well suited for local and global
distinctiveness detection discussed in the following section.
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TABLE I: Maximum sAUC values of different models. The sigma values in the second rows are where models achieve their
best performance. Accuracies of three best models over each dataset are highlighted in bold font. L, G, and LG stand for the
proposed Local, Global and Local+Global models, respectively.

Dataset AIM Borji DCT Itti ASW CA LARK FT RARE SR HFT SWD L G LG
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

TORONTO 0.695 0.696 0.712 0.646 0.713 0.696 0.707 0.582 0.707 0.693 0.672 0.621 0.714 0.707 0.717
Optimal σ 0.03 0.03 0.04 0.03 0.01 0.06 0.04 0.04 0.02 0.03 0.01 0.02 0.04 0.04 0.04

MIT 0.685 0.674 0.671 0.621 0.685 0.673 0.652 0.514 0.675 0.658 0.636 0.613 0.685 0.687 0.688
Optimal σ 0.03 0.03 0.04 0.03 0.01 0.03 0.06 0.03 0.02 0.03 0.01 0.02 0.04 0.03 0.03

KOOTSTRA 0.592 0.600 0.604 0.580 0.617 0.602 0.598 0.561 0.611 0.591 0.569 0.543 0.616 0.613 0.619
Optimal σ 0.02 0.02 0.04 0.02 0.01 0.02 0.03 0.04 0.02 0.01 0.01 0.01 0.03 0.03 0.03

NUSEF 0.650 0.636 0.631 0.575 0.644 0.630 0.619 0.550 0.637 0.634 0.602 0.577 0.644 0.646 0.647
Optimal σ 0.04 0.04 0.04 0.03 0.02 0.04 0.05 0.04 0.02 0.03 0.01 0.02 0.04 0.04 0.04

TABLE II: Average Runtime (in second) obtained with non-optimized MATLAB implementations of different models.

Model AIM Borji DCT Itti ASW CA LARK FT RARE SR HFT SWD L G LG
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Times(s) 15.68 12.11 0.12 0.58 32.54 31.3 2.26 0.12 1.55 0.03 0.62 0.74 0.73 0.58 0.76

IV. SALIENCY MAP ESTIMATION

With the compact representation ÑQ, two complementary
(local and global) operations are applied to each channel. The
first one detects center-surround contrast while the latter one
focuses on the rarity of a single patch over the entire image.
Then, an inter-channel fusion is followed by a local-global
combination to produce final saliency map.

A. Center-Surround Contrast

For local saliency, we evaluate the dissimilarity between
center patch with its surroundings. Suppose pj ∈ Si, j ∈
[1, · · · , 8] are eight-connected surrounding patches of the
center patch pi. Center-surround contrast is defined as:

Sl(pi) =
1

8

8∑
j=1

Dpca(pi,pj)

Dloc(pi,pj) + δ
, (5)

where δ is a constant. Dloc(pi,pj) is the Euclidean distance
between spatial locations of pi and pj . Dpca(pi,pj) is the Eu-
clidean distance between PCA-based compact representation
discussed in Section III, i.e.,

Dpca(pi,pj) = ‖ñqi − ñqj‖22. (6)

Dloc emphasizes the contrast between nearby patches and
eliminates the influence of patches far away. This is consistent
with our motivation for local distinctiveness.

B. Global Rarity

Although it is common for saliency regions to have high
center-surround contrast, it often happens that saliency regions
have similar surroundings but they are globally distinct over
the entire image. A simple example is a patch within the
saliency object. It has low local contrast but high rarity in
the image. Therefore, a complementary global operation is
necessary for saliency detection algorithm.

Motivated by the information-theoretic saliency method of
Bruce and Tsotsos [4], we measure the rarity of patch using the
probability of each coefficient in the PCA-based patch repre-
sentation. More specifically, we calculate the binned (100 bins

here) histograms for each principal component coefficient. The
produced histograms are denoted as h1, · · · ,hK . For a certain
patch pi represented by ñqi = [nq1i , nq

2
i , · · · , nqKi ], the prob-

ability of nqji is approximated by P (nqji ) = hj(Bin(nqji ))/L
where Bin(nqji ) is the bin that nqji falls into. Assuming
that coefficients of different components are conditionally
independent, the probability of pi is the product of probability
of individual components. That is

P (pi) =
K∏
j=1

P (nqji ). (7)

And the rarity of this patch is measured by:

Sg(pi) = − logP (pi). (8)

C. Fusion of Saliency maps

After the local or global mechanisms performed on each
channel, 6 saliency maps are fused into one single map.
The fusion is achieved in two steps: an inter-channel fusion
followed by a local-global combination. For a better fusion, we
exploit a smart normalization operator N (·) [7]. This operator
assigns higher weight to maps with smaller number of strong
peaks. Guaranteed by the decorrelated color space, uniform
fusion of the normalized maps is applied for inter-channel
fusion,

SL = N (Schannel1
l ) +N (Schannel2

l ) +N (Schannel3
l ),

SG = N (Schannel1
g ) +N (Schannel2

g ) +N (Schannel3
g ).

(9)

Finally, local and global saliency maps are combined as

S = N (SL) · N (SG). (10)

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed saliency model
qualitatively and quantitatively by using TORONTO saliency
benchmark described in [4], MIT saliency benchmark de-
scribed in [20], KOOTSTRA saliency benchmark described
in [21] and NUSEF saliency benchmark described in [22].
The TORONTO saliency benchmark includes 120 images with
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)
Fig. 2: Qualitative results for the TORONTO dataset [4]. (a) Original image. (b) Human Fixations Map. (c) Our model. (d)
AIM [4]. (e) Borji [5]. (f) DCT [6]. (g) Itti [7]. (h) ASW [8]. (i) CA [9]. (j) LARK [10]. (k) FT [11]. (l) RARE [12]. (m)
SR [13]. (n) HFT [14]. (o) SWD [15]. Saliency maps are blurred with optimal blurring factor which are shown in Table I.

resolution of 511×681 from indoor and outdoor environments.
The MIT saliency benchmark includes 1003 images collected
form Flicker and LabelMe datasets. The KOOTSTRA saliency
benchmark includes 101 images with resolution of 768×1024
from 5 different categories: animals, automan, buildings,
flowers and natural scenes. The NUSEF saliency benchmark
includes 758 images containing emotionally affective scenes
or objects. For all the experiments described in this paper, the
patch size is 14× 14, and the extracted principal components
number is 11.

Our model is compared with 12 mainstream models
AIM [4], Borji [5], DCT [6], Itti [7], ASW [8], CA [9],
LARK [10], FT [11], RARE [12], SR [13], HFT [14],
SWD [15]1. To tackle the well-known center bias and border
effects, shuffled Receiver Operating Characteristic Area Under
the Curve (sAUC) is adopted to evaluate the performance. The
sAUC score is computed to evaluate the consistency between
the saliency map and its fixations map [6]. The saliency map
of each model is convolved with a variable size Gaussian
kernel. The sAUC score of models are obtained over the range
of standard deviations σ of the Gaussian kernel in image
width (from 0.01 to 0.13 in steps of 0.01). Table I shows
the maximum sAUC values of different models under optimal
σ. It can be seen that our model outperforms most of the
other models. Besides our model, the second best model is
AWS focusing on the sAUC score, which is consistent with
the conclusion in [23]. The qualitative comparison with the
mainstream models on TORONTO saliency benchmark is also
shown in Fig. 2. As demonstrated by the experimental results,
the fully exploited usage of PCA for saliency detection can
improve the precision of human fixations prediction.

1The implementation of mainstream models except SR and HFT are down-
loaded from http://saliency.mit.edu/results mit300.html. The implementation
of SR is downloaded from http://www.its.caltech.edu/∼xhou/. The implemen-
tation of HFT is downloaded from https://sites.google.com/site/jianlinudt/hft.

Another advantage of the proposed model is that it yields
an acceptable computational complexity. Table II shows the
average runtime with different models. Computation times
reported in Table II are obtained with non-optimized MAT-
LAB implementation on a PC running Windows 7 with Intel
CORETM i7-3770S @ 3.1 GHz CPU and 8GB RAM. The
input image size is 511× 681. Our model is faster than AIM,
Borji, ASW, CA, LARK, RARE, and slower than DCT, Itti,
FT, SR, HFT, and SWD models. Our Global model is a little
faster than our Local model. And our Local+Global model
consumes almost the same computation time as our Local
model. This is because that the Global model uses the same
patch representation with Local model. Compared to the PCA-
based color space conversion and patch representation process,
the time consumed for histogram calculation is ignorable.

VI. CONCLUSION
A patch-wise saliency detection algorithm is proposed based

on PCA analysis in this paper. By fully exploiting the power of
PCA, the color channels are decorrelated and a compact repre-
sentation of patch is obtained. And then visual distinctiveness
are detected both locally and globally based on this represen-
tation. Local distinctiveness measures center-surround contrast
while global distinctiveness evaluates the rarity compared to
the entire image. Experimental results demonstrate that the
PCA-based color space conversion and patch representation
can improve the accuracy of human fixations prediction. And
the proposed algorithm achieves superior accuracy against
the mainstream algorithms on predicting human fixations.
Incorporating top-down factors and extending our model into
spatio-temporal domain are two future works.
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