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ABSTRACT

In this paper we address the issue of enhancing salient ob-
ject detection through diffusion-based techniques. For reli-
ably diffusing the energy from labeled seeds, we propose a
novel graph-based diffusion scheme called affinity learning-
based diffusion (ALD), which is based on learning full-range
affinity between two arbitrary graph nodes. The method dif-
fers from the previous existing work where implicit diffu-
sion was formulated as a ranking problem on a graph. In
the proposed method, the affinity learning is achieved in a
unified graph-based semi-supervised manner, whose outcome
is leveraged for global propagation. By properly selecting
an affinity learning model, the proposed ALD outperforms
the ranking-based diffusion in terms of accurately detecting
salient objects and enhancing the correct salient objects under
a range of background scenarios. By utilizing the ALD, we
propose an enhanced saliency detector that outperforms 7 re-
cent state-of-the-art saliency models on 3 benchmark datasets.

Index Terms— Saliency detection, graph-based diffu-
sion, affinity learning, semi-supervised learning

1. INTRODUCTION

Many graph-based diffusion processes were reported for
salient object detection [1, 2, 3, 4]. Most of them can be con-
sidered as computing a saliency map induced by the diffusion
result under the following formulation [3]:

s = A∗y (1)
where A∗ is a global propagation matrix, y is a seed vec-
tor that makes a preliminary assessment of saliency level of
graph nodes, and s is the diffused result that is used to induce
a saliency map. Different diffusion models such as geodesic
propagation [2], manifold ranking [1] and quadratic energy
model [3], have been employed and reported promising re-
sults, however inhomogeneous seed ingredient and complex
image contents like textures remain challenging in these tech-
niques, as shown in Fig.1. The resulting erroneous diffusion
often requires subsequent post-processing for refinement. For
example, [1] proposes a second stage refinement which dif-
fuses on the foreground map obtained by thresholding the re-
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Fig. 1. Diffusion from image borders [1]. From left to right: (a) an input
image; (b) manifold ranking [1]; (c) quadratic energy model [3]; (d) the pro-
posed diffusion scheme (ALD); (e) ground truth. All diffusion models are
tested under the same parameter settings.

sult in the first stage. Since such post-processing highly re-
lies on the result from the previous stage diffusion, a natural
question arises: for saliency detection, can we find a better
graph-based diffusion model that propagates energy reliably
and generates more accurate map? This paper provides some
new insights to this question. The main contributions of this
paper are:

i) We propose a simple yet effective graph-based diffu-
sion scheme: affinity learning-based diffusion (ALD), which
is based on learning a full-range affinity matrix. To the best
of our knowledge, this work is the first to explicitly address
the affinity learning in saliency detection.

ii) Benchmark tests between the ALD and ranking-based
diffusion models (e.g. [1, 3]) are conducted. The key find-
ings are given in Table 3, where the best models for learning
affinity and ranking can be determined.

iii) Based on the ALD, we propose an enhanced saliency
detector, which achieves reliable saliency detection by only
one-stage diffusion and outperforms state-of-the-art ap-
proaches.

2. AFFINITY LEARNING-BASED DIFFUSION (ALD)

2.1. Problem Formulation
An input image is first represented by a similarity graph G =
(V,E,W), where V is a set of vertices (or nodes), E is a set
of graph edges, and W is a symmetrical edge weight matrix
with entrywij (wij ≥ 0) encoding similarity between vertices
(wij = 0 for non-connected vertices). We first over-segment
the image into N SLIC superpixels [5]. Each superpixel, de-
noted as vi, i ∈ {1 : N}, is a node in V . Superpixels vi and
vj that satisfy either {vj ∈ Ni} or {∃k, vj ∈ Nk, vk ∈ Ni}
are connected to form an edge in E, where Ni, Nk denote a
set of spatial adjacent superpixels of vi, vk, respectively. Fur-
thermore, arbitrary boundary superpixels are connected. An
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Table 1. Four commonly used manifold regularization models. MRsn: regularization with symmetric normalized weight matrix; MRun: regularization with
un-normalized weight matrix; MRsp: simple regularization; MRln: regularization with left-normalized weight matrix.

Model Learned Affinity Regularization formulation

MRsn A = (I− αD−
1
2

W WD
− 1

2

W )−1 E(A:,k) =
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1
2wij(
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di
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Fig. 2. Graph structure and affinity learning. Upper left: An input image.
Upper right: Learned affinity with respect to a reference node. Bottom: Su-
perpixel segmentation and graph construction. Yellow circle dots are vertices
and white lines are graph edges.

illustration of graph structure is given in Fig.2.
Given such a graph G = (V,E,W), the key idea of affin-

ity learning-based diffusion (ALD) is to learn a full-range
affinity matrix A, with which the diffusion is formulated as:

s = D−1
A Ay (2)

where y is a seed vector, A is a symmetric full-range affinity
matrix with entry aij (aij ≥ 0) that encodes pairwise affinity
between ith and jth nodes, DA is the diagonal degree matrix
of A (i.e., with ith diagonal entry be

∑
j aij), and s is the dif-

fused result. A desired full-range affinity matrix A satisfies
that, if two superpixels (ith and jth) locate in a same visually
coherent region, the affinity value aij between them is large.
Otherwise, aij is small or aij → 0 (see the “affinity image”
in Fig.2). With learned A, D−1

A A serves as a filtering kernel
(i.e. with each row summed to 1) and performs the diffusion
on y. This filtering kernel has a conservation property [6, 7].
If one conducts a linear transformation y ← ky + c (k, c are
constants) that does not change the ranking order of seed el-
ements, the resulting s will maintain the same transformation
s← ks + c, yielding to the same s after linearly normalizing
s into [0,1].

2.2. Determine A by Semi-Supervised Learning
To learn the long range affinity between superpixels in an im-
age, inspired by [8] which proposes to learn the full affin-
ity for spectral segmentation, we employ graph-based semi-
supervised learning (GSSL) [9, 10]. The GSSL is used to
obtain a relevance score between each node and a reference
node [8]. We use such relevance scores as our affinity values.
Note that there are three categories in the GSSL [10]: mincut,

harmonic function, and manifold regularization. The first two
categories are only applicable to multi-class semi-supervised
learning, whereas our affinity learning is a one-class problem.
For the manifold regularization, four common models in ma-
chine learning [9, 10] can be used as summarized in Table 1.
In the following, we take the first model (MRsn) in Table 1
as an example and show how the affinity values are learned.
Recall that the graph has N nodes, i.e. |V | = N , and using
MRsn, the affinity vector A:,k (kth column of A) containing
the relevance scores of all nodes with respect to a reference
node vk is computed as:

A:,k = (I− αD−
1
2

W WD
− 1

2

W )−1bk (3)
where bk is a label vector, whose element corresponding to
the reference node vk (i.e., the kth node) is 1 whereas the re-
maining unlabeled elements are 0, DW is the diagonal degree
matrix of W, and I is the identity matrix. One can prove (3)
is the closed-form solution to minimizing the following regu-
larization function:

E(A:,k) =

N∑
i,j=1

1

2
wij(

aik√
di
− ajk√

dj
)2 + µ

N∑
i=1

(aik − bki)2 (4)

where aik, bki denote the ith element of A:,k, bk, respec-
tively, and di is the ith diagonal entry of DW. The first
summation term in (4) is the pairwise smoothness term. It
forces similar neighbor nodes to take similar relevance scores.
The second summation term in (4) is the data fitness term,
which requests the relevance scores fitting to the original la-
bels. Here we have α = 1

1+µ . By stacking all affinity vectors
in a row, one obtains the learned affinity matrix A:

A = [A:,1,A:,2, ...,A:,N ]

= (I− αD−
1
2

W WD
− 1

2

W )−1[b1,b2, ...,bN ]

= (I− αD−
1
2

W WD
− 1

2

W )−1

(5)

It is easy to see that A computed is symmetric, and all entries
of A are greater than 0, making A a valid full-range affinity
matrix applicable to (2). Likewise, one may also apply three
other GSSL models in Table 1 to the affinity learning task.
For all models in Table 1, we have α = 1

1+µ if any. It is
worth noting that in Table 1, A from the fourth model MRln
is not symmetric, therefore A← (A + AT )/2 is computed.

The overview of the proposed ALD scheme is in Table 2.
It is worth noting that all models in Table 1 can be used to
perform regularization directly on the seed vector y, where
the diffusion is formulated as a ranking problem (for details
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Table 2. Affinity Learning-based Diffusion (ALD).
1. Construct a local neighbor graph G = (V,E,W);
2. Learn the full-range affinity matrix A from W;
3. Set diagonal of A to zeros, and use self-normalized

matrix D−1
A A to diffuse from the seed vector y;
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Fig. 3. Processing pipeline of the proposed method. “T,B,L,R” are short
for “Top, Bottom, Left, Right”, respectively. The proposed method is able to
achieve good result with less refinement.

see [1, 3]). In Section 4, we compare between using the four
models in Table 2 for both ALD and ranking-based diffusion.

3. SALIENCY DETECTION BY USING ALD

By choosing the most effective affinity learning model in Ta-
ble 1, we may achieve more accurate diffusion. By utilizing
the ALD, we propose an enhanced saliency detector inspired
by [1]. The block diagram of our method is shown in Fig.3.
We firstly use four image borders as seeds but remove bound-
ary nodes that are likely to belong to boundary-cropping ob-
jects. Next, we use the proposed ALD to perform diffusion on
the seeds separately, and reverse each map (similar to [1]) to
suppress the background and highlight potential objects. Fi-
nally, four border-specified maps are superpixel-wisely mul-
tiplied to obtain the final saliency map. For the affinity learn-
ing model we use, see Section 4.2. Details of the proposed
scheme are as following:
Graph edge weight matrix W: The weights among nodes
are constructed by incorporating both color and image edge
cues among superpixels [11]:

wij =
√√√√exp(−λc||ci − cj ||)︸ ︷︷ ︸

color term

· exp(−λe max
i′∈īj

fi′)︸ ︷︷ ︸
edge term

(6)

where ci/cj are mean CIELab colors of vi/vj , īj is the straight
line on the image plane connecting centroids of two superpix-
els, i′ refers to a pixel on īj, and fi′ indicates the edge magni-
tude at i′, and λc/λe are parameters controlling the damping
rate of the two terms. We derive fi′ from an edge detector
[12]. Using (6), large color difference and strong edges be-
tween two superpixels lead to small similarity weights [11].
Border seed placement: To alleviate the possible over-
suppression of a salient object that touches any border (see
Fig.3), border superpixels in the background seed vector
y are filtered according to a boundary connectivity prior
[13]. We first define a soft region Ak associated with each
boundary node vk using the geodesic method in [13], and its
corresponding prior is defined as:

Pk = 1− exp{−Ratio
2(vk)

2σ2
bc

} (7)

whereRatio(vk) = Len(Ak)/
√
Area(Ak), Len(Ak) is the

cropped length of Ak at image borders, and Area(Ak) is the
area of Ak. The prior value is close to 0 if the boundary node
belongs to an object that adjoins image boundary, and is close
to 1 if it belongs to the background. σbc = 1 is set according
to [13]. The kth element of y is then defined accordingly as:

yk =

{
Pk if Pk > Tbc

0 otherwise
(8)

where Tbc is a predefined threshold used to clip the weak pri-
ors. The function of Tbc is shown in Fig.3 by the red rectangle.

4. RESULTS AND COMPARISONS

Two types of experiments were conducted and the results are
reported in this paper: 1) to compare the performance of using
the four models in Table 1 for the ALD as well as for ranking-
based diffusion. 2) to compare the proposed saliency detector
to 7 state-of-the-art saliency detectors.

Three benchmark datasets: MSRA-1000 [14] (1000 im-
ages), SOD [15] (300 images), and ECSSD [16] (1000 images
with texture background) are used. Evaluations are conducted
in terms of two metrics: (1) precision-recall (PR) curve [14,
17, 1, 18, 19]. (2) weighted F-measure (Fwβ ) [20].

4.1. Diffusion through using Different Models
Setups: It is important to compare different diffusion models
under the same settings, i.e. µ, W, and y. For fair com-
parison, we follow the original graph configuration in [1, 3]
on both graph topology (the same as introduced in Section 2)
and edge weight computation. In the setting, 200 superpix-
els are used and wij is computed solely by the color term in
(6) (λc = 10 according to [1]). The regularization param-
eter µ of all models in Table 1 is fixed as 0.01, leading to
α = 0.99. Two types of seed vectors were used. The first
type is regarding superpixels on each image border of an im-
age as background seeds. The second type is deriving an ini-
tial foreground seed. For the latter, we use the most effective
foreground seed in [3]. This seed, called “backgroundness” is
obtained by computing the color similarity between a super-
pixel and all boundary superpixels as follows:

yi = 1−N{
∑

j:vj∈B
Sim(vi, vj)}

where B is the boundary superpixel set, N is the normaliza-
tion function, and the color similarity function Sim(vi, vj)
is consistent to the one for computing wij . We use notation
“MRsn” to refer to directly using a model for ranking-based
diffusion, and use “MRsn ALD” to refer to using the same
model for affinity learning-based diffusion (ALD).
Results: Evaluations by Fwβ on three datasets are shown in
Table 3. One can see that the ALD generally outperforms
using the models for ranking saliency directly. The best
performing diffusion models are MRun ALD, MRsn ALD,
which significantly improves the diffusion accuracy over
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MRlnInput MRln_ALD MRsp MRsp_ALD MRun MRun_ALD MRsn MRsn_ALD GT

Fig. 4. Visual comparison of diffusion via different models from the back-
ground seeds. The model which performs generally the best is highlighted in
the brown dash box. GT represents ground truth.

Table 3. Evaluation by Fwβ . The bracket with “B”/“F” after a dataset in-
dicates diffusion from background/foreground seeds as mentioned in Section
4.1. The bracket after a Fwβ score indicates ranking position on a certain
dataset. The best score on a dataset is highlighted in bold.

Methods MSRA(B) ECSSD(B) SOD(B) MSRA(F) ECSSD(F) SOD(F)
MRln 0.709(4) 0.466(3) 0.398(3) 0.666(5) 0.423(2) 0.371(3)
MRln ALD 0.609(7) 0.374(6) 0.312(8) 0.557(7) 0.363(6) 0.322(7)
MRsp 0.651(6) 0.352(7) 0.330(6) 0.679(4) 0.372(5) 0.333(5)
MRsp ALD 0.717(3) 0.434(5) 0.373(5) 0.694(1) 0.403(4) 0.356(4)
MRun 0.660(5) 0.440(4) 0.381(4) 0.617(6) 0.340(7) 0.323(6)
MRun ALD 0.763(1) 0.471(2) 0.408(1) 0.681(3) 0.420(3) 0.377(1)
MRsn 0.509(8) 0.331(8) 0.325(7) 0.349(8) 0.272(8) 0.245(8)
MRsn ALD 0.747(2) 0.479(1) 0.408(1) 0.682(2) 0.427(1) 0.376(2)

MRun and MRln. The best model for ranking-based diffu-
sion is MRln. This reveals that MRun used by [1] is a less
good choice. The worst diffusion model is MRsn.

When comparing the performance between diffusion on
the background and foreground seeds in Table 3, one can ob-
serve that the diffusion from image borders [1] is more effec-
tive than from the foreground seed [3].

Visual comparison among different diffusion models are
shown in Fig.4, which reveals that choosing an appropriate
diffusion model is crucial to obtaining an accurate saliency
map, and our method consistently improves diffusion quality
over MRsp, MRun, MRsn. As a result, the background is
suppressed effectively and entire objects are emphasized.

4.2. Comparison with 7 State-of-the-art Methods
Setups: Section 4.1 allows one to choose the best diffu-
sion model for the ALD. We choose MRun ALD since it
performs favorably on diffusion from both the foreground
and background seeds. MRsn ALD can be chosen as well
since it achieves reasonably good performance similar to
MRun ALD. In the proposed method N = 400 superpix-
els are used for a richer representation of image contents.
λc = λe = 10 and Tbc = 0.4 are empirically set. The
edge maps are produced by the structured random forest edge
detector [12], which works on multi-scales and achieves state-
of-the-art performance with fast speed. Other edge detectors
can be used if they produce reasonably good edge maps.

We compare with 7 recent state-of-the-art methods includ-
ing: GS (Geodesic Saliency) [21], HS (Hierarchical Saliency)
[16], PCA [22], DRFI (Discriminative Regional Feature In-
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Fig. 5. Quantitative comparison (precision-recall curve and weighted F-
measure Fwβ ). The best Fwβ is underlined in red.

tegration) [23], GC (Global Cue) [18], GMR (Graph-based
Manifold Ranking) [1], wCtrO (background weighted Con-
trast with Optimization) [13]. The implementation of [3] is
not publicly available. Other methods exist, but most of them
are inferior to the aforementioned ones.
Results: Quantitative evaluation of different methods on the
three datasets are shown in Fig.5. The proposed method
by simply improving the diffusion technique has achieved
very competitive performance to the best performing state-
of-the-arts, some of which have adopted multi-stage refine-
ment/optimization (e.g. GMR, wCtrO) or supervised learning
(e.g. DRFI), whereas our method only uses one-stage diffu-
sion. On Fwβ , our method achieves the best results on ECSSD,
SOD, and the second best on MSRA-1000.

To show the effectiveness of individual modules, eval-
uation was conducted on ECSSD by ablating each com-
ponent from our full implementation in Fig.3. The results
are shown in the bottom-right sub-figure in Fig.5. One can
see that the diffusion technique contributes most to the per-
formance gain. Changing the diffusion to ranking-based
methods MRln/MRun largely degrades the performance.
Besides, incorporating edge cue leads to moderate improve-
ment, whereas the introduced boundary connectivity prior
marginally boosts the performance.

5. CONCLUSION

A novel diffusion scheme based on affinity learning is pro-
posed for saliency detection. Our results from the proposed
scheme and comparisons with 7 state-of-the-art methods on
three benchmark datasets have shown that the proposed diffu-
sion scheme consistently outperforms existing ranking-based
diffusion methods by even using a simple one-stage diffusion.
This shows that diffusion models are crucial to high quality
saliency detection, and the proposed diffusion method is ef-
fective. Future work will be conducted on applying the pro-
posed diffusion to other computer vision applications.
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