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ABSTRACT

In this paper, we address the issue of designing a smoke detector
robust to illumination variations. Our contribution consists in resort-
ing to color invariants as salient smoke features. More precisely, the
proposed detector employs consecutively of an illumination invari-
ant color representation, a photometric gain based background sub-
traction, a chrominance detection and a smoke identification based
on two invariant color descriptors. The experimental results show
that the proposed method can effectively detect smoke with robust-
ness to illumination changes and noises, frequently encountered in
wildfire video-surveillance environments.

Index Terms— Wildfire smoke detection, color invariants, pho-
tometric gain, chrominance detection, invariant color descriptors.

1. INTRODUCTION

In the last decade years, smoke detection in video surveillance has
attracted research attention as smoke plays a crucial role in early
fire detection. Indeed, smoke appears usually at early stage of fire
and can be observed from a great distance. A lot of Video Smoke
Detection (VSD) methods have been proposed, and a comprehensive
review of them is presented in [1]. Video-based smoke detection
remains nevertheless a challenging problem because of two main
reasons. Mainly, smoke is hard to model due to its highly variable
visual appearance. Furthermore, lighting conditions, environmental
changes, dynamic background, and unstable cameras affect substan-
tially the performance of smoke detection. That is why the research
on video-based smoke detection focuses mostly on the reduction of
false alarms, while saving the computation time.
Most existing methods exploit various visual characteristics of
smoke such as color, texture, shape and motion features. For in-
stance, in [2], candidate smoke regions were extracted by combining
an energy analysis from wavelet coefficients, a background sub-
traction and, a chrominance detection. In [3], a statistical analysis
is carried out using the idea that the smoke shows grayish color
with different illumination. In [4], candidate smoke regions were
extracted following three consecutive steps, namely a block-based
frame difference, a rule-based chrominance detection, and an ac-
cumulative motion model. Later, in [5] smoke was detected based
on the analysis of color and texture features of moving regions,
extracted by means of a background subtraction procedure. The
temporal behavior of smoke was captured by a mixture of Gaussians
modeling the wavelet energy in order to classify smoke patterns.
More recently, in [6], a back-propagation neural network was used
to detect smoke patterns, which were described by a concatenation of
the histograms of local binary pattern and local binary pattern vari-
ance pyramids. Differently, in [7] a support vector machine (SVM)
classifier was applied on spatio-temporal correlation descriptors to
identify smoke. Furthermore, Wang et al. in [8] combined the color

information with a modified center symmetric local ternary pattern
to differentiate between smoke and non-smoke regions. More lately,
in [9] an wavelet transformation was implemented based on the
RGB contrast-image to distinguish smoke from other low frequency
signals and, the existence of smoke was determined by analyzing the
shape and energy variations. Park et al. in [10] presented a wildfire
smoke detection method based on a spatio-temporal bag-of-features
and a random forest classifier. More recently, histograms of ori-
ented gradients (HOG) and histograms of optical flow (HOF) were
computed in [11] to take into account both appearance and motion
information. Initially, candidate smoke regions were identified us-
ing background subtraction and HSV-color analysis. Subsequently,
three SVM classifiers were combined to identify smoke regions
based on respectively spatio-temporal energy analysis, bag of HOG-
HOF features, and dynamic texture analysis.
In this paper, we focus on color cue for distinguishing smoke re-
gions because it provides powerful information as shown in the
aforementioned methods. In that case, the main challenge consists
in preserving robustness with respect to photometric variations as
are common in outdoor scenes. These variations can affect either
locally a scene such as shadows, shadings and specularities, or
globally as light intensity changes and light color changes. Conse-
quently, the performance of smoke detection can be greatly affected
if the descriptors used are not robust to such changes. To the best of
our knowledge, this issue has not yet been addressed in the context
of smoke detection. In this paper, we propose a novel VSD approach
which exploits some photometric invariants to achieve robustness
against both local and global illumination changes. This paper is
organized as follows. First, the proposed VSD method is presented
in Sec. 2. Then, experimental results are provided in Sec. 3. Finally,
conclusions are drawn in Sec. 4.

2. SMOKE DETECTION METHODOLOGY

Our novel color invariant-based smoke detection method relies on
the following steps. First, the RGB background image is estimated.
Then, both current frame and background image are converted to-
wards an illumination invariant color representation. After that,
an effective block-based background/foreground segmentation un-
der challenging conditions is performed by means of photometric
gains. Afterwards, non-smoke blocks are filtered out by exploiting
the photometric properties of smoke. Finally, two invariant color
descriptors are exploited to identify smoke regions.

2.1. Adaptive background estimation

We adopt a robust adaptive background model to deal with the lo-
cal variations of illumination over time. Let Fn denote the RGB-
valued frame of the sequence at time n and, F cn be its channel c ∈
{R,G,B}. The background image B0 is firstly initialized by the
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first frame F0. Then, it is updated over time, at each pixel (x, y),
according to a linear combination of previous background and frame
[12]:

Bn+1(x, y)=

{
αBn(x, y)+(1−α)Fn(x, y) if Mn(x, y)=0,
Bn(x, y) otherwise,

(1)
where α ∈ [0, 1] is a time constant parameter reflecting the sensitiv-
ity of the update to the variations and, Mn is a binary mask such as
Mn(x, y) = 1 for pixels with changes in illumination or generated
by moving objects. A naive way to derive Mn is the thresholding of
the difference between two consecutive frames. However, the high
level of noise in outdoor sequences induces unacceptable inaccura-
cies. Therefore, we calculate the block difference as the sums of
differences of pixels within a block:

bn(i, j)=

 1 if
∑

c∈{R,G,B}

∣∣∣∣∣ ∑
(x,y)∈bij

F cn(x, y)−F cn−1(x, y)

∣∣∣∣∣>Tb,
0 otherwise,

(2)
where Tb is a predetermined threshold, and block bij is on the ith

row and jth column in the video. Then, we derive easily the binary
mask Mn(x, y) = bn(i, j) , ∀ (x, y) ∈ bij . Thereby, pixels whose
color values have changed between the two consecutive frames are
detected. Note that Mn is not suitable to segment moving regions,
but it is just requisite to estimate the background model. Concerning
the learning rate α, it depends on the percentage of moving pixels
and, it can be set as α= 1−

∑
(x,y)Mn(x,y)

N
, where N is the area of

Mn.

2.2. Illumination invariant color representation

Color is an effective cue for discriminating smoke regions [3, 4].
However, color information in recorded RGB videos depends on the
illumination condition under which the scene is viewed. In particu-
lar, large variations in lighting conditions are constantly encountered
during a day in outdoor environments. These changes can be mod-
eled by the well-known diagonal-offset model [13] as follows:RrGr

Br

 =

β1 0 0
0 β2 0
0 0 β3

RuGu
Bu

+

o1o2
o3

 (3)

where [Ru, Gu, Bu] denotes an image taken under an unknown
light source which is mapped to a transformed image [Rr, Gr, Br]
taken under the reference light, called canonical illuminant. The
mapping is parameterized by the light color changes {β1, β2, β3}
and, the shift parameters {o1, o2, o3}. Motivated by the studies in
color constancy [14], we propose to convert both the frame Fn and
its corresponding backgroundBn from the RGB color space towards
an invariant color space to discard the influence of global illumina-
tion changes. More precisely, the RGB images are normalized inde-
pendently; R′G′

B′

 =


R−µR
σR

G−µG
σG

B−µB
σB

 , (4)

with the mean µc and the standard deviation σc of the distribution
in channel c computed over the whole image. This yields, for every
channel, a distribution with zero mean and unit variance. Thanks to
this normalization, the transformed RGB color space ensures invari-
ance to light color changes and shifts [15]. Indeed, we can check

it through the diagonal-offset model. For the sake of clarity, let us
consider for instance the red channel:

µR=
1

N

∑
(x,y)

(β1R
u(x, y)+o1) = β1µ

u
R+o1, (5)

σR=

√
1

N

∑
(x,y)

(β1Ru(x, y)+o1−β1µuR−o1)2 =β1σ
u
R,(6)

R−µR
σR

=
β1R

u+o1−β1µuR−o1
β1σuR

=
Ru−µuR
σuR

. (7)

Note that the light color change {β1, β2, β3} and shift {o1, o2, o3}
parameters are canceled out. In the following, Bn and Fn denote
respectively the transformed background and the transformed frame
at time n into the illumination invariant color representation. These
images are also scaled to [0, 255]. It is important to point out that
the frame is normalized with the means and the standard deviations
computed over the corresponding background image to discount the
influence of its additional moving objects. Fig. 1 illustrates the effect
of this normalization on images acquired under different illumina-
tion conditions.

(a) (b) (c) (d)

Fig. 1. The illumination invariant color representations (b) and (d)
of respectively the RGB images (a) and (c).

2.3. Moving region detection

Once the background model Bn has been estimated, the moving re-
gions are extracted from the corresponding frame Fn using the back-
ground subtraction technique. Let Dn = |Fn−Bn| be the absolute
difference of the background image and current frame in the illumi-
nation invariant color space. Rather than thresholding the difference
Dn, we propose to rely on the photometric gain in order to detect
moving regions in different color similarity situations and under lo-
cal illumination changes. For each channel c ∈ {R′, G′, B′}, an
adapted version of the photometric gain [12] is computed as fol-
lows:

Λcn(x, y)=

{
1− min[Fc

n(x,y),B
c
n(x,y)]

max[Fc
n(x,y),B

c
n(x,y)]×Dc

n(x,y)
if Dc

n(x, y) 6= 0,

0 otherwise.
(8)

On the one hand, we note that Λcn(x, y) takes values close to 1
each time the moving pixel is different from the corresponding back-
ground pixel and, coherently with a high probability that the pixel
could be marked as foreground regarding channel c. On the other
hand, Λcn(x, y) is close to 0 if the pixel belongs to the background.
Thereby, moving regions can be identified thanks to the resulting
overall gain, defined as Λn(x, y) =

∏
c∈{R′,G′,B′}

Λcn(x, y). More-

over, we perform a blockwise decision so as to achieve further ro-
bustness against noise and local illumination changes:

rn(i, j)=

{
1 if 1

|bij |
∑

(x,y)∈bij
Λn(x, y) > Tr,

0 otherwise.
(9)
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A moving block has an average gain greater than a predetermined
threshold Tr (set to 0.5). Finally, we derive the moving detection bi-
nary maskRn(x, y)=rn(i, j) , ∀ (x, y) ∈ bij . Thus, moving pixels
with high photometric gains are reliably detected. Fig. 2 illustrates
the effectiveness of photometric gains in background/foreground
segmentation. Moving regions are segmented out accurately even
in color similarity situations. Indeed, our background subtraction
method is able to detect moving smoke regions in front of white
background. In addition, false positive detected pixels, mostly due
to noise and local illumination changes, are considerably reduced.
This demonstrates clearly the robustness of our strategy face to noise
and local illumination changes.

(a) (b) (c) (d)

Fig. 2. (a) and (c) the detected moving regions by using respectively
the photometric gains (b) and (d).

2.4. Chrominance detection

In order to filter out non-smoke colored moving pixels, we make use
of the following photometric properties of smoke [1]:

C = max
(
R′, G′, B′

)
−min

(
R′, G′, B′

)
, (10)

I =
R′+G′+B′

3
, (11)

S =

√
1

2
(R′−G′)2 +

1

6
(R′+G′−2B′)2, (12)

Rule : (C<T1) and (T2<I<T3) and (S<T4) , (13)

where the values of the thresholds were experimentally determined
using a number of training images1. Smoke’s color is black, gray-
ish or white, we can then detect smoke colored pixels by thresh-
olding the chroma C, the intensity I and the saturation S. For a
smoke pixel, R′, G′ and B′ values are very close to each other, i.e.
(C<T1), its intensity ranges from T2 to T3, and its saturation is
lower than T4. These thresholds are set respectively to 35, 80, 190
and 25, as justified by Fig. 3. According to the rules defined in
(13), the chrominance detection is performed to validate each mov-
ing block. If at least 10% of the moving block’s pixels are smoke
colored then the block is considered as a candidate smoke region.
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Fig. 3. The photometric properties of smoke according to (a) chroma
C, (b) intensity I and (c) saturation S.

1The database (http://wildfire.fesb.hr/) contains a selection of wildfire
smoke images, manually segmented in 3-classes defined as: smoke, maybe
smoke and non-smoke.
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Fig. 4. Comparison of invariant color descriptors of regions with and
without smoke: (a) background image, (b) frame with smoke, (c)
the robust hue descriptors, and (c) the hue-based oriented gradient
histograms.

2.5. Invariant color descriptors

Regions under semi-transparent smoke change their intensity (i.e
they become lighter or darker) but keep preserved their chromac-
ity. For instance, a green pixel covered by an white smoke becomes
light-green, which is lighter than green but has the same chromacity.
In order to exploit this color property, we chose the HSI color space
since it provides a natural separation between chromacity and inten-
sity. Both intensity I and saturation S, defined respectively in (11)
and (12), are exploited to detect candidate smoke regions according
to the rule (13), as explained in the subsection 2.4. As regards the
hue cue, we notice that a smoke on background does not change its
hue H defined as:

H=arctan

( √
3 (R′−G′)

(R′+G′−2B′)

)
. (14)

In addition, smoke often lowers the saturation S of the background.
A color descriptor that combines hue and saturation cues is thus able
to discriminate powerfully the smoke regions. The desired color
descriptor should be computationally efficient and, offers a certain
amount of photometric invariance while maintaining high discrim-
ination power. For these reasons, we make use of the robust hue
descriptor [16]. This color descriptor is a 36-dimensional weighted
histogram Hh where the bin index is determined by hue and the
weight by saturation. The hue descriptor is invariant to local illumi-
nation changes, namely shadows, shadings and specularities.
Furthermore, regions under smoke retain most of their texture.
Herein, we exploit the hue-based oriented gradient histogram since
a smoke on background does not change its gradient orientation,
while its gradient magnitude becomes lower. This descriptor [17] is
likewise a weighted histogram Hg where a gradient orientation bin
index is weighted by gradient magnitude. It is worth to note that
gradients are calculated from the hue in order to obtain invariance to
shadow, shading and specular edges [18].
For each candidate block, we compute the invariant color descrip-
tors for both background image and current frame. A candidate
block is classified as smoke if for both descriptors the Chi-squared
distance (15) between frame and background histograms is lesser
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than predetermined thresholds:

χ2(H1,H2)=
1

2

∑
k

(H1[k]−H2[k])2

H1[k] +H2[k]
, (15)

Rule :
(
χ2
(
HhF ,HhB

)
<Th

)
and

(
χ2(HgF ,H

g
B)<Tg

)
. (16)

Fig. 4 shows a comparison on these descriptors with and without
smoke, it is clear that smoke smooths them and thus their bins be-
come lower. Hence, we assess the similarity between a smoke region
and the background reference in chromaticity and texture by means
of respectively the robust hue descriptor and the hue-based oriented
gradient histogram descriptor. These descriptors, as shown in the
next section, allow a good trade-off between photometric invariance
and discriminating power in the context of video-based smoke de-
tection.

Table 1. Smoke Detection performance in Bilkent videos.
Smoke videos TNR TPR TPR of [11]
sBehindtheFence 100 94.72 94.44
sBtFence2 100 99.08 98.71
sEmptyR1 100 98.08 73.08
sEmptyR2 100 89.55 88.60
sMoky 100 86.23 99.78
sWasteBasket 92.60 99.89 99.29
sWindow 100 94.30 88.52
Total average 98.94 94.55 91.77

3. EXPERIMENTAL RESULTS

We have tested our method on real smoke videos from Bilkent Uni-
versity2. These videos include outdoor and indoor environments un-
der various illumination conditions. The used block’s size is 16×16.
Fig. 5 demonstrates the performance of the proposed method for
the different video sequences. We evaluate the performance of our
method, as shown in Table 1, by computing true positive rate TPR
and true negative rate TNR which are, respectively, defined by:

TPR =
Number of TP frames

Number of TP frames+Number of FN frames
, (17)

TNR =
Number of TN frames

Number of TN frames+Number of FP frames
. (18)

These quantitative results are compared with those obtained by the
recent smoke detection method [11]. The proposed method outper-
forms the method in [11], with a TPR’s average of 94.55%. Besides,
we obtain an a TPR’s average of 98.94%. This shows the robustness
of the proposed method since false alarms are considerably reduced.
It is important to note that these promising results are achieved by
exploiting the color cue and employing the photometric invariance.
This indicates that color is a powerful cue for discriminating smoke,
especially when it is coupled with the aspect of photometric invari-
ance.

4. CONCLUSION

In this paper, a novel smoke detection method based on color invari-
ants is proposed. It relies on an illumination invariant color represen-

2http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html

Fig. 5. Experimental results of the proposed method.

tation, photometric gains to segment out moving regions, a chromi-
nance detection to filter out non-smoke colored regions, and two
invariant color descriptors to identify reliably smoke regions. Ex-
perimental results, carried out under various challenging conditions,
demonstrate the robustness of our method to illumination changes
very often encountered in wildfire video-surveillance environments,
as well as to the noise corrupting constantly acquired videos. In fu-
ture works, we will incorporate additional discriminant informations
such as texture, shape and motion features to improve further the
smoke detection.
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