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ABSTRACT 

 

Image processing and analysis techniques have drawn 

increasing attention since they enable a non-extractive and 

non-lethal approach to fisheries survey, such as fish size 

measurement, abundance prediction, catch estimation and 

compliance, species recognition and population counting.  In 

this work, we present an innovative and effective method for 

measuring the chute-based fish length based on the 

morphological midline of the fish.  The midline is generated 

through recursive morphological operations on the 

segmented fish mask.  To conduct reliable measurement, 

even under harsh environment, we also propose a systematic 

method for detecting water drop on camera lens.  The robust 

detection, which can be performed either in real-time or in 

offline processing, is based on a blur measure derived from 

the gradient of the image and the contour of fish. 

 

Index Terms— Morphological midline, fish length, blur 

measure, water drop detection 

 

1. INTRODUCTION 

 

Recently, the potential of using automatic image 

processing system in fishery draws attention from both 

industry and aquaculture science [1-3].  Counting and 

isolation of fish after captured are normally carried out 

directly on fishing vessels.  The conventional laborious 

manual process increases the required labor and limits the 

efficiency of fisheries for either commercial or research 

purposes.  An automated chute-based fish monitoring system 

can systematically perform fish body segmentation and 

length measurement.  Therefore, a successful development of 

these algorithms will be beneficial to significantly speed up 

this indispensable process on fishing vessels.  Compared to 

traditional manual sorting and measuring, the automatic 

image processing system is faster, less error-prone and more 

scalable.  While there are many advantages to use automatic 

image processing system in fishery or aquaculture, challenges 

from the inspected subjects and operation environment 

remain [1].  For example, the live fish, when passing through 

the chute, may move and deform freely, making it difficult to 

segment them or to measure their lengths.  The environment 

may have dynamic lighting changes with restricted visibility, 

or moreover, the cameras may be occasionally splashed by 

water, etc.  In this work, the fish images are automatically 

captured from chute on board by a static camera as shown in 

Fig. 1.  The images are only taken when fish is sliding through 

the chute and trigger the infrared sensor attached on the chute.  

With a set of background images of the chute without fish, 

we can build a Gaussian mixture model (GMM) for each 

image pixel [4], so that the fish foreground can be segmented 

based on background subtraction.  However, because the fish 

slide freely on the chute surface, the fish body might not be 

straight, making it difficult to estimate the fish length.  

Furthermore, sometimes water is accidentally sprayed on the 

camera lens by fish or fishermen, resulting in blurs on fish 

images, and causing problems in subsequent segmentation, 

length measurement, and further applications, such as species 

recognition.  Therefore, we propose two algorithms to deal 

with the above problems.  One is the midline point algorithm 

for measuring the curved fish body.  The other is the water 

drop detection algorithm for water drop detection.  The 

midline is generated through recursive morphological 

operation on the fish mask.  While the algorithm is similar to 

the skeletonization algorithms which are based on digital 

morphological erosion or distance transform [5-7], it 

improves the measurement performance by guaranteeing to 

robustly generate a list of midline points and two endpoints 

(head and tail) to effectively represent the fish body 

morphology.  On the other hand, our proposed water drop 

detection algorithm is inspired by [8] for water drop 

detection.  A blur measure is derived from the gradient of the 

image and the contour of the segmented fish.  We assume that 

in the areas affected by water drops, the fish contour is 

relatively blurry and the image gradients are smaller than 

those of unaffected areas. 

The rest of the paper is organized as follows: Section 2 

discusses how this paper relates to prior works.  Section 3 

describes how we apply the midline point algorithm to 

  
(a)                                         (b) 

Fig. 1. Chute with a static camera, a) interior view with checkboard 

for calibration, b) installation with cover on board. 
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measure the fish length.  Section 4 introduces the blur 

measure and its application to water drop detection.  Section 

5 shows the experiment results and discussions, followed by 

the conclusion in Section 6.  

 

2. RELATED WORKS 

 

One of the challenges in length measurement of fish by 

computer vision is that the fish body may be not straight.  

Strachan [9] purposes a method by connecting the midpoints 

of the vertical lines perpendicular to the orientation of the fish 

to measure the fish length.  White et al. [10] further improve 

the flexibility of this method by using a moment-invariant 

method to determine the orientation of the fish.  Both of their 

methods generate a line along the orientations of fish body 

and tail, and well describes the length of deformed fish.  

However, when the fish body is greatly curved, the midpoints 

of the vertical lines could fall on one side of the fish body due 

to the changing of the width of fish along its orientation. 

For the water drops or blur detection problems, there 

have been some works done, but none of them are suitable for 

our application settings.  Alippi et al. [8] propose a method 

detecting external disturbances on camera lens by comparing 

the blur measures of a series of frames which contain the 

same scene acquired from a static camera, but it is not suitable 

when the texture and size of the subject keep changing in 

consecutive images.  Kanchev et al. [11] propose an 

algorithm for detecting blurred regions in images by using 

wavelet-based histograms and SVM, but since the patches for 

generating histogram are selected from the whole image, it is 

more suitable for the images in which edges and features are 

roughly evenly distributed. 

 

3. MORPHOLOGICAL MIDLINE 

 

The general idea of morphological midline is by connecting 

the midline points whose distances to both sides of the 

segmented object (fish) contour are the same.  To generate 

the midline points, we assign left- and right-endpoints on the 

object contour, and recursively apply morphological erosion 

on the object mask by a circle structuring element.  Then, at 

each recursion, we effectively find the candidates of midline 

points on the contours of eroded object mask (discussed in 

the following subsection). 

We define the set of sub-contours of an object contour 𝐶 

as 𝒮(𝐶) = {𝐶𝑖|𝑖 = 1,2, … , 𝑛}, which consists of several 

contours of the object mask enclosed by 𝐶 after a 

morphological erosion.  If 𝐶 has no sub-contour, we have an 

empty set 𝒮(𝐶) = 𝜙.  To facilitate the description of the 

morphological midline point algorithm, we denote the 

Euclidian distance between two points, 𝑃1 and 𝑃2, as 

𝑑(𝑃1, 𝑃2).  We also define the distance between a point 𝑃 and 

the contour 𝐶 as 𝑑(𝑃, 𝐶) = 𝑑(𝐶, 𝑃) = min
𝑃𝑖∈𝐶

𝑑(𝑃, 𝑃𝑖). 

 

3.1. Locating Head and Tail Endpoints 

 

To use the midline point algorithm to generate the midline of 

the fish, we have to first assign the left- and right-endpoints 

as the head and tail endpoints.  Assume we already have the 

fish segmented as foreground object, we perform principle 

component analysis (PCA) on the fish contour points to find 

the orientation of the fish.  Then we can choose the head 

endpoint as the point whose component along the orientation 

of the fish is the largest.  To choose the tail endpoint, 

however, especially for the fish with forked tails, we have to 

choose the middle of the notch between the lobes of the tail 

fin.  In order to find the best choice, we use a scoring function 

so that the points closer to the center of the fish body and 

farther from the tips of the tail fin get higher scores, and the 

point at the tail having the highest score is chosen as the tail 

endpoint. 

 

3.2. Midline Point Algorithm 

 

The pseudo code for our proposed midline point 

algorithm is given in Algorithm 1.  The input is a segmented 

object contour 𝐶, and left- and right-endpoints 𝐿 and 𝑅, which 

are assumed to be available.  The output 𝑀 = 𝑀(𝐶, 𝐿, 𝑅) is 

the list of midline points from left-endpoint to right-endpoint.  

Steps 5 and 6 find the new midline points 𝐿𝐿 and 𝑅𝑅 as the 

closest points on sub-contours to the previous midline points, 

with the initial midline points being the left- and right-

endpoints (i.e., either head or tail) of the segmented object 

contour (see Fig. 2).  Because the structuring element is a 

circle, the distances from  𝐿𝐿 and 𝑅𝑅 to either side of the 

contour should be very close, satisfying the criteria of midline 

points.  Step 8 recursively finds the midline points of the sub-

contour by assigning 𝐿𝐿 and 𝑅𝑅 as endpoints if they are on 

the same sub-contour.  If 𝐿𝐿 and 𝑅𝑅 are on different sub-

contours due to multiple generated sub-contours in one 

erosion (see Fig. 3), Steps 10 and 11 recursively find the 

midline points of these two sub-contours separately, under 

the constraint that two additional endpoints 𝐿𝑅 and 𝑅𝐿 (one 

from each sub-contour) are closest to each other, so that these 

two sub-contours can be connected with the shortest distance.  

The midline point search will now be split into two separate 

tasks and continue from there. 

 
Fig. 3. One contour is split into two sub-contours. 

𝐿𝐿 𝐿𝑅 𝑅𝐿 
𝑅𝑅 

𝑅 
𝐿 

  
Fig. 2. The new midline points 𝐿𝐿 and 𝑅𝑅 as the closest points on 

sub-contour(s) to the previous midline points, with the initial 

midline points being the left- and right-endpoints. 

𝐿𝐿 

𝑅𝑅 

𝐿 

𝑅 

tail 

head 
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Finally, to generate the midline from the list of midline 

points, we can either connect the midline points by piecewise 

straight lines or by splines (see Fig. 4).  In practice, we apply 

a Gaussian blur followed by a thresholding on the fish mask 

to approximate the morphological erosion to reduce both the 

computation time and the effect of noise on contour.  If the 

standard deviation of the Gaussian blur is 1/𝑛 of the widest 

width of a fish contour, the number of midline points of the 

fish is about 𝑛.  To be more specific, the smaller the standard 

deviation, the more precise but also more noise-sensitive the 

midline points. 

 

4. BLUR MEASURE AND WATER DROP 

DETECTION 

 

To detect water drops on camera lens, we can use the 

blurriness information of the images.  However, because most 

of the areas in the fish images captured from the chute are 

textureless, we cannot compare the blurriness with arbitrary 

regions in the image.  Moreover, since the fish in each image 

could be different in texture and size, we cannot compare the 

blurriness among consecutive images either. 

The general idea of our water drop detection is based on 

the assumption that the edges on the fish contour becomes 

relatively blurry in the area affected by water drop than in the 

unaffected area.  With the fish segmentation result based on 

GMM-modeled background subtraction as described in 

Section 1, we can thus measure the blurriness/sharpness of 

edge on the fish contour. 

 

4.1. Sharpness on Contour 

 

We define the sharpness of a contour point 𝑥 in image 𝑧 as: 

𝑚(𝑥) =
‖∇𝑧(𝑥)‖2

‖𝑧(𝑥)‖2

 ,  

where the operator ‖. ‖2 is the ℓ-2 norm.  In practice, we first 

find the sharpness 𝑚𝑅(𝑥), 𝑚𝐺(𝑥) and 𝑚𝐵(𝑥) for each R-G-

B channel respectively, and then calculate the total sharpness 

as 𝑚(𝑥) = 𝑚𝑅𝐺𝐵(𝑥) = (𝑚𝑅
2 (𝑥) + 𝑚𝐺

2 (𝑥) + 𝑚𝐵
2 (𝑥))

0.5
. 

 

4.2. Blur Measure 

 

The idea of blur measure for water drop detection is that if a 

contiguous area lacks of sharp points, we assume the 

blurriness is caused by water drop.  First, we use Otsu’s 

threshold to separate all the detected contour points based on 

their sharpness into two groups: 𝑆 (sharp points) and 𝐵 

(blurry points).  Then we can define the density of sharp 

points in a contiguous window ℎ ⊂ 𝐶 of the contour as:  

𝑝ℎ(𝑆) =
|ℎ ∩ 𝑆|

|ℎ|
 . 

If the density is much smaller than the average density on the 

contour, i.e., if 𝑝ℎ(𝑆) ≪ 𝑝𝐶(𝑆), we assume there is a potential 

water drop around ℎ.  Finally, we define the blur measure of 

a contour 𝐶 as: 

blur(𝐶) =
𝑝𝐶(𝑆)

min
|ℎ|=𝑁

𝑝ℎ(𝑆)
 ,  

where 𝑁 is a fixed window size.  If blur(𝐶) is larger than a 

threshold (we use 1000 in the experiments) or if 

min
|ℎ|=𝑁

𝑝ℎ(𝑆) = 0, we conclude that there is a water drop. 

After the water drops are detected, we can either 

manually remove the water drops if the process is in real-

time; or we can use the unaffected image areas to extract 

useful features for species classification or recover the shape 

of the fish at the affected area using the results of 

classification.  These are beyond the scope of this paper and 

left for future works. 

 

5. EXPERIMENT RESULTS 
 

The proposed methods are evaluated by a set of images 

captured from chute on vessel.  The resolution is 1920 × 1080 

pixels.  Because the camera is not shooting perpendicular to 

the chute surface, we first de-skew the fish based on a 

calibration image where chessboard is placed on the chute 

surface, and then do segmentation.  The segmentation result 

(see Fig. 5) is refined using a histogram backprojection 

procedure [12] and further processed for the fish length 

measurement and water drop detection. 

 

5.1. Fish Length Measurement 

Algorithm 1: Finding midline points by recursive morphological 

operation 

Input: Contour 𝐶, and endpoints 𝐿 and 𝑅 

Output: List of midline points 𝑀 = 𝑀(𝐶, 𝐿, 𝑅) 

1: initialize 𝑀 as empty list, 𝑀 ← 𝑀 + 𝐿 

2: if 𝒮(𝐶) = 𝜙 then 

3:       𝑀 ← 𝑀 + 𝑅, return 𝑀 

4: end if 
5: select left sub-contour 𝐶𝐿 ← arg min

𝐶𝑖∈𝒮(𝐶)
𝑑(𝐿, 𝐶𝑖  )  

and right sub-contour 𝐶𝑅 ← arg min
𝐶𝑖∈𝒮(𝐶)

𝑑(𝐶𝑖  , 𝑅) 

6: select left midline point 𝐿𝐿 = arg min
𝑃∈𝐶𝐿

𝑑(𝐿, 𝑃)  

and right midline point 𝑅𝑅 = arg min
𝑃∈𝐶𝑅

𝑑(𝑃, 𝑅) 

7: if 𝐶𝐿 = 𝐶𝑅 then 
8:       𝑀 ← 𝑀 + 𝑀(𝐶𝐿, 𝐿𝐿, 𝑅𝑅)  

9: else 
10:       select midline points 

      (𝐿𝑅, 𝑅𝐿) = arg min
(𝑃1,𝑃2),𝑃1∈𝐶𝐿,𝑃2∈𝐶𝑅

𝑑(𝑃1, 𝑃2) 

11:       𝑀 ← 𝑀 + 𝑀(𝐶𝐿, 𝐿𝐿, 𝐿𝑅) + 𝑀(𝐶𝑅, 𝑅𝐿, 𝑅𝑅)  

12: end if 
13: 𝑀 ← 𝑀 + 𝑅, return 𝑀 

 

  
Fig. 4. The midline points are recursively identified, and finally 

connected to form the midline. 

𝐿𝐿 𝐿 

𝑅𝑅 
𝑅 

… 
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We apply the midline point algorithm to generate the midline 

of fish.  The standard deviation of the Gaussian blur used in 

the recursive morphological operation is 1/10 of the widest 

width of the fish contour, resulting in roughly 10 midline 

points per fish contour.  The sample results are shown in Fig. 

6.  For the straight fish, the midline simply follows the 

orientation of the fish body.  While for the fish whose body 

and tail has different orientation, the midline is also consistent 

with the center of the body and tail.  It can be seen that even 

when the fish is greatly curved, the midline is still close to the 

center of the fish.  For the fish having forked tail, the endpoint 

of the midline is also correct.  The experiment is based on 

3571 fish samples consisting of 11 species, and a 1.49% of 

mean of absolute error is achieved.  Compared to other 

methods, such as bounding box or [10], our method performs 

the best in average (see Table I). 

 

5.2. Water Drop Detection 

 

We use the Scharr operator [13] to get the gradient of images.  

For the blur measure of the contour, we use window size 𝑁 =
0.2 × |𝐶| and set the threshold for blur(𝐶) as 1000.  The 

sample results are shown in Fig. 7.  For the images with water 

drop, we can see that there are very few sharp points in the 

affected area; and for the unaffected image, the sharp points 

are evenly distributed on the contour.  The results of a dataset 

consisting of 339 fish images are shown in Table II.  The 

water drop detection algorithm achieves a true positive (TP) 

rate of 80% and false positive (FP) rate of 17%. 

 

6. CONCLUSION 

 

Two novel algorithms aimed to solve on-board fishery 

problems, i.e., estimating the curved fish length and detecting 

water drops on camera lens under harsh environment, are 

proposed.  Through recursive morphological operation, the 

midline point algorithm generates a list of midline points 

whose distance to both sides of fish body are similar.  

Experimental results show that we can achieve very reliable 

midline estimation of fish length measurement with 1.49% of 

mean of absolute error. 

In addition, by defining the blur measure of the fish 

contour, our water drop detection algorithm can detect the 

blurred area of the image where the fish contour is affected.  

Experiment results show that our water drop detection 

algorithm can achieve a true positive rate of 80% and a false 

positive rate of 17%. 
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(a)                                     (b) 

  
(c)                                     (d) 

  
(e)                                     (f) 

Fig. 6. Midline of fish of different curvatures and shapes of tail fins: 

a, c) straight, b) body and tail in different orientation, d) greatly 

curved and e, f) forked tail. 

   
Fig. 7. Water drop detection by sharp/blurry points of fish contour: 

left) with and right) without water drop.  The sharp/blurry points are 

in green/red.  The circle indicates the position of the water drop. 

Table I 

Mean of absolute error of fish length measurement 

Species (number) Box [10] Midline 

Arrowtooth Flounder (722) 2.1% 1.6% 1.7% 

Flathead Sole (450) 1.1% 1.2% 1.1% 

Pacific Cod (282) 1.4% 1.1% 1.1% 

Pacific Halibut (213) 3.8% 1.6% 1.3% 

Pacific Ocean Perch (156) 5.5% 3.0% 2.7% 

Rex Sole (178) 1.4% 1.5% 1.5% 

Shortspine Thornyhead (210) 2.7% 1.9% 2.0% 

Southern Rock Sole (316) 1.6% 1.7% 1.5% 

Walleye Pollock (839) 2.3% 1.9% 1.3% 

Yellow Irish Lord (71) 2.1% 1.8% 1.8% 

Yellowfin sole (134) 1.5% 1.3% 1.1% 

Total (3571) 2.14% 1.68% 1.49% 

 

   
Fig. 5. Rectification and segmentation of fish image. 

Table II 

TP and FP rates of the water drop detection algorithm 

Image Number Positive 

Detection 

TP 

rate 

FP 

rate 

Without water drop 184 148 80% - 

With water drop 155 26 - 17% 

 

1909



 

8. REFERENCES 

 
[1] B. Zion, “The Use of Computer Vision Technologies in 

Aquaculture – A Review,” Computers and Electronics in 

Agriculture, vol. 88, pp. 125-132, 2012. 

[2] J.R. Mathiassen, E. Misimi, M. Bondø, E. Veliyulin, and S.O. 

Østvik, “Trends in Application of Imaging Technologies to 

Inspection of Fish and Fish Products,” Trends in Food Science and 

Technology, vol. 22, no. 6, pp. 257-275, 2011. 

[3] M.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, 

“Tracking Live Fish from Low-Contrast and Low-Frame-Rate 

Stereo Videos,” IEEE Transactions on Circuits and Systems for 

Video Technology, vol. 25, no. 1, pp. 167-179, 2015. 

[4] Z. Zivkovic, and F. van der Heijden, “Efficient Adaptive Density 

Estimation per Image Pixel for the Task of Background 

Subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp. 773-

780, 2006. 

[5] P.K. Saha, G. Borgefors, and G.S. di Baja, “A Survey on 

Skeletonization Algorithms and Their Applications,” Pattern 

Recognition Letters, http://dx.doi.org/10.1016/j.patrec.2015.04.006, 

2015. 

[6] C. Arcelli, and G.S. di Baja, “A Width-Independent Fast 

Thinning Algorithm,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 7, no. 4, pp. 463-474, 1985. 

[7] C. Arcelli, G.S. di Baja, and L. Serino, “Distance-Driven 

Skeletonization in Voxel Images,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 33, no. 4, pp. 709-720, 

2011. 

[8] C. Alippi, G. Boracchi, R. Camplani, and M. Roveri, “Detecting 

External Disturbances on Camera Lens in Wireless Multimedia 

Sensor Networks,” IEEE Transactions on Instrumentation and 

Measurement, vol. 59, pp. 2982-2990, 2010. 

[9] N.J.C. Strachan, “Length Measurement of Fish by Computer 

Vision,” Computers and Electronics in Agriculture, vol. 8, pp. 93-

104, 1993. 

[10] D.J. White, C. Svellingen, and N.J.C. Strachan, “Automated 

Measurement of Species and Length of Fish by Computer Vision,” 

Fisheries Research, vol. 80, pp. 203-210, 2006. 

[11] V. Kanchev, K. Tonchev, and O. Boumbarov, “Blurred Image 

Regions Detection using Wavelet-based Histograms and SVM,” 

IEEE International Conference on Intelligent Data Acquisition and 

Advanced Computing Systems: Technology and Applications, 

Prague, Czech Republic, pp. 457-461, 2011. 

[12] M.-C. Chuang, J.-N. Hwang, K. Williams, and R. Towler, 

“Automatic Fish Segmentation via Double Local Thresholding for 

Trawl-based Underwater Camera Systems,” IEEE International 

Conference on Image Processing, Sept. 2011. 

[13] H. Scharr, “Optimal Filters for Extended Optical Flow,” 

Lecture Notes in Computer Science, vol. 3417, pp. 14-29, 2007. 

1910


