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Abstract—In this paper we propose a new algorithm based
on kernel machines for automatic, instantaneous detection of
emergencies occurring in a hospital Intensive Care Unit. The
proposed algorithm takes as input the multitude of vital statistics
that are continuously monitored for a critical patient in Intensive
Care, learns the underlying pattern between the statistics that is
naturally inherent for the particular patient, and instantaneously
signals any deviation from this pattern. Through application to
real data from a cardiac Intensive Care Unit at a hospital in a
developing country, we show that it is possible to easily obtain
high detection accuracy with low false alarm rates.

I. INTRODUCTION

A critical patient in a hospital Intensive Care Unit (ICU)
has a large number of probes constantly measuring his or her
vital statistics. Round the clock monitoring of these measure-
ments are typically performed by a nurse, with a doctor paged
in the event of an emergency. The task of simultaneously
monitoring multiple readings on multiple patients becomes
tedious and monotonous for a human aide working the long
shifts that are typical of the medical profession, specially in
understaffed hospitals that are common in developing coun-
tries. This consequently increases the risk of important events
going unnoticed. Indeed, studies have shown that the optimal
concentration span for a human being ranges between 25 and
30 minutes [1].

The well-equipped ICUs in developed countries do have
some degree of simple, automated signalling systems installed,
with alarms raised when some reading crosses a pre-set
critical threshold. These systems are mostly built using sim-
plistic, change point detection algorithms [2]. An example is
BioSignTM [3], which alerts when major variables deviate ±3
standard deviations from their mean values. However, waiting
for a critical statistic such as blood pressure or heart rate to
exhibit extreme values may be too late for an ICU patient. The
set of vital statistics for a patient may together also contain
an inherent correlation structure, which may be broken far
before any particular statistic displays extreme values. Timely
detection of the break of this underlying correlation structure
may provide an earlier indication of an impending emergency.

Our goal is the automatic, instantaneous detection of any
sudden break in the complicated, underlying structure that is
naturally formed by the multitude of biological signals pro-
vided by the human body. This inherent correlation structure
between the signals may also be unique to a given patient.

As a step towards this goal, we propose the Kernel-based
Online Anomaly Detection (KOAD) algorithm [4]. KOAD
is an adaptive algorithm that learns the normal pattern in a
multivariate timeseries of data, and signals a break in the
pattern in real-time. The proposed algorithm is lightweight
in terms of computational and memory resources required,
and amenable for use with any kind of medical equipment.
It is thus ideally suited for application to a hospital in a
developing country with limited financial and technological
resources. We apply KOAD to timeseries of measurements
taken from real cardiac patients at the Intensive Care Unit of
the National Heart Foundation Hospital and Research Institute
(NHFH&RI), Dhaka, Bangladesh. We show that it is possi-
ble to instantaneously detect many subtle events that would
otherwise have gone unnoticed and unreported.

A. Related Work

To the best of our knowledge, this is the first application of
a real-time, pattern matching algorithm to automated monitor-
ing of a multidimensional timeseries of observations collected
at a hospital ICU [5]. Zhu presented a scheme using Hidden
Markov Models (HMMs) in [6] to detect anomalies in blood
glucose levels. Her method used historical observations as a
benchmark, and required up to 30 days of normal, training
data, thereby rendering it ineffective in the time-critical en-
vironment of an ICU. Lee et al. have recently proposed an
offline, block-based approach using Support Vector Machines
(SVMs) to classify patients at risk of complications during
Percutaneous Coronary Intervention (PCI) [7]. Keogh et al.
proposed a data mining technique in [8] to identify discords
in electrocardiogram (ECG) timeseries data, where a discord
is defined as a subsequence with large distance from the rest
of the sequence. The technique of Keogh et al. was, however,
only a heuristic derived using conventional distance metrics,
and the authors’ objective was only to obtain a speedup over an
earlier brute-force method. The heuristic of Keogh et al. was
also restricted to static, single-dimensional data. The follow-
up work by Chuah and Fu [9] used an adaptive window-based
re-sampling method on the single-dimensional ECG timeseries
to improve on the detection accuracies obtained in [8].

B. Organization of Paper

The rest of this paper is organized as follows. Section II
presents our proposed automated emergency detection method
using the Kernel-based Online Anomaly Detection (KOAD)
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algorithm. Section III presents the results of our experiments
conducted on real data collected from patients in a cardiac
Intensive Care Unit (ICU). Section IV concludes and outlines
the future potential of our approach.

II. AUTOMATIC EVENT DETECTION

A. Kernel Functions

Algorithms based on the so-called “kernel trick” involve
using a kernel function that maps the input data onto a feature
space of much higher dimension [10], with the expectation
that points depicting similar behaviour would cluster in the
richer, higher-dimensional space. A suitable kernel function,
when applied to a pair of input vectors, may be interpreted
as an inner product in the feature space. This subsequently
allows inner products in the feature space (inner products of
the feature vectors) to be computed without explicit knowledge
of the feature vectors themselves, by simply evaluating the
kernel function:

k(xi,xj) = 〈φ(xi), φ(xj)〉 (1)

where xi,xj denote the input vectors and φ represents the
mapping onto the feature space. Using kernel functions thus
allows simple comparison of higher order statistics between
the input vectors.

B. Kernel-based Online Anomaly Detection Algorithm

If the points {xt}
T
t=1 show normal behaviour in the input

space, then the corresponding feature vectors {φ(xt)}
T
t=1 are

expected to (also) cluster. Then, it should be possible to
explain the region of normality in the feature space using
a relatively small dictionary of approximately linearly inde-
pendent elements {φ(x̃j)}

m
j=1. Feature vector φ(xt) is said

to be approximately linearly dependent on {φ(x̃j)}
m
j=1 with

approximation threshold ν, if the projection error δt satisfies:

δt = min
a

∥∥∥∥∥∥
m∑
j=1

ajφ(x̃j)− φ(xt)

∥∥∥∥∥∥
2

< ν (2)

where a = {aj}
m
j=1 is the optimal coefficient vector [11].

Here {x̃j}
m
j=1 represent those {xt}

T
t=1 that are entered into

the dictionary. The size of the dictionary, m, is expected to
be much less than T , thereby leading to computational and
storage savings.

Observe that (2) involves an L2 norm [12], which may be
simplified exclusively in terms of the inner products of φ(x̃j)
and φ(xt), and thus evaluated using the kernel function without
explicit knowledge of the feature vectors themselves:

δt = min
at

{
a
T
t K̃t−1at − 2atk̃t−1(xt) + k(xt,xt)

}
(3)

where [K̃t−1]i,j = k(x̃i, x̃j) and [k̃t−1(xt)]j = k(x̃j ,xt)
for i, j = 1 . . .mt−1. The optimum sparsification coefficient
vector at that minimizes δt at time t is then:

at = K̃
−1
t−1 · k̃t−1(xt). (4)

The expression for error δt may then be simplified into:

δt = ktt − k̃t−1(xt)
T · at. (5)

The Kernel-based Online Anomaly Detection (KOAD)
algorithm [4] operates at each timestep t on a measurement
vector xt. It begins by evaluating the error δt in projecting the
arriving xt onto the current dictionary (in the feature domain).
This error measure δt is then compared with two thresholds
ν1 and ν2, where ν1 < ν2. If δt < ν1, KOAD infers that xt is
sufficiently linearly dependent on the dictionary, and represents
normal behaviour. If δt > ν2, it concludes that xt is far away
from the realm of normality and immediately raise a “Red1”
alarm to immediately signal an anomaly.

If ν1 < δt < ν2, KOAD infers that xt is sufficiently
linearly independent from the dictionary to be considered an
unusual event. It may indeed be an anomaly, or it may repre-
sent an expansion or migration of the space of normality itself.
In this case, KOAD does the following: it raises an “Orange”
alarm, keeps track of the contribution of the relevant input
vector xt in explaining subsequent arrivals for � timesteps,
and then takes a firm decision on it.

At timestep t + �, KOAD re-evaluates the error δ in
projecting xt onto dictionary Dt+� corresponding to timestep
t + �. Note that the dictionary may have changed between
timesteps t and t+ �, and the value of δ at this re-evaluation
may consequently be different from the δt at timestep t. If
the value of δ after the re-evaluation is found to be less than
ν1, KOAD lowers the orange alarm and keeps the dictionary
unchanged.

If the value of δ is found instead to be greater than ν1
after the re-evaluation at timestep t + �, KOAD performs a
secondary “usefulness” test to resolve the orange alarm. The
usefulness of xt is assessed by observing the kernel values of
xt with {xi}

t+�
i=t+1

. If a kernel value is high (greater than a
threshold d), then φ(xt) is deemed close enough to φ(xi). If a
significant number of the kernel values are high, then xt cannot
be considered anomalous; normal traffic has just migrated into
a new portion of the feature space, and xt should be entered
into the dictionary. Contrarily if almost all kernel values are
low, then xt may be concluded to be a reasonably isolated
event, and should be heralded as an anomaly. KOAD evaluates:[

t+�∑
i=t+1

I(k(xt,xi) > d)

]
> ε�, (6)

where I is the indicator function and ε ∈ (0, 1) is a selected
constant. In this manner, by employing this secondary “use-
fulness test”, KOAD is able to distinguish between an arrival
that is an anomaly, from one that is a result of a change in the
region of normality. If (6) evaluates true, then KOAD lowers
the relevant orange alarm to green (no anomaly) and adds xt

to the dictionary. If (6) evaluates false, it elevates the relevant
orange alarm to a “Red2” alarm.

KOAD also deletes obsolete elements from the dictionary
as the region of normality expands or migrates, thereby main-
taining a sparse and current dictionary [4]. In addition, it
incorporates exponential forgetting [13], [14] so that the impact
of past observations is gradually reduced.
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Fig. 1. ROC curve showing KOAD performance. It is clear that close to full
detection may be easily obtained with low false alarm rates.

III. EXPERIMENTS

A. Data

Real data was collected from an ICU at the National
Heart Foundation Hospital and Research Institute. The data
consisted of 100 measurement vectors of 37 vital statistics
of 3 patients recorded at 1-minute intervals. Examples of the
vital statistics monitored include the heart and pulse rates,
the systolic, diastolic and mean blood pressures, the systolic,
diastolic and mean pulmonary arterial pressures, the body
temperature, the oxygen and carbon dioxide pressures, and
important ion concentration levels such as sodium, potassium
and chloride. Instances where any of the monitored statistics
reached a critical value were manually identified by a cardiac
surgeon. It is these labelled instances of particular levels being
out of the normal range that we desire instantaneous, automatic
alerting to.

B. Results

We ran KOAD for a range of values for the thresholds
ν1 and ν2. The objective was to detect the events that had
been manually identified by the surgeon, and obtain as high a
detection rate as possible with the least amount of false posi-
tives. Figure 1 presents the trade-off between the probability of
detection (PD) and the probability of false alarms (PFA) as a
Receiver Operating Characteristics (ROC) curve. It is obvious
from Fig. 1 that it is easy to achieve close-to-full detection
with low false alarm rates. This is possible because the normal
points do indeed cluster in the feature space defined by the
chosen kernel mapping, as was initially postulated.

The best values for the thresholds ν1 and ν2 for a particular
application may be determined over a training period using
a supervised, cross-validation approach. For our experiments,
default values were used for KOAD dropping parameters L
and d, and the parameters � and ε that determine orange alarm
resolution [4]. As is explained later, that the detection results
are not particularly sensitive to the precise setting of any of
these supplementary parameters. The Gaussian kernel function
[10] proved to be the most suitable.

Figure 2 presents a plot of the KOAD detection statistic
δt for a sample experiment which included 11 known events.
Here KOAD was run with thresholds ν1 = 0.05 and ν2 = 0.20.
The timesteps corresponding to the identified anomalies are
shown as red, filled stems. It is clear that most of the identified
anomalous timesteps do yield high values for the detection
statistic δt and the instances where critical events occur are
easily discernible, a result in agreement with the ROC curve
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Fig. 2. Progression of the detection statistic δt, with KOAD run over the full
set of 36 monitored vital statistics of a patient across 100 timesteps. Timesteps
corresponding to the identified critical events are indicated as red, filled stems.
Sample experiment with ν1 = 0.05, ν2 = 0.20.

depicted in Fig. 1. One of the known anomalies is observed
to lie in the “Orange Alarm” range (i.e. between ν1 and ν2)
in Fig. 2, while the other identified instances all lie above ν2.
The stems in the first few timesteps corresponding to “Green”
(normal) cases are seen to be marginally higher than the rest
of the normal casw, as the first few timesteps correspond to
the training period during which the dictionary is being built.

C. Monitoring Specific Vital Statistics

The strength of the KOAD algorithm is that it is able
to quickly learn patterns in a streaming sequence of high-
dimensional, voluminous data, which is why we advocate its
use with the large set of medical measurements typically taken
from an ICU patient, to learn the latent patterns and underlying
correlation structures which may not be discernible by the
doctor’s naked eyes. This said, a doctor may also wish to
closely and more precisely monitor a specific measurement, or
a specific subset of measurement, for example in the case of an
illness which renders this specific subset of medical statistics
as the most relevant and crucial. In this subsection we analyse
two such cases as examples.

Figure 3 presents a plot of the detection statistic δt, with
KOAD run over a subset of 10 readings (out of the total
of 37) corresponding to a patient’s blood pressure levels, for
100 timesteps. Pre-labelling of the data set had indicated 5
instances of specific readings being in dangerous territory, and
it is these 5 timesteps that we desire automating alerts to.
Oxygen is supplied around the body through blood that is
pumped by the heart. Blood enters the heart through the vena
cava and exits via the aorta. Excessive high pressures in the
arteries may lead to haemorrhage and cardiac arrests. Timely
identification of erratic vascular pressures is crucial to prevent
the occurrence of such fatal situations [15].

It is clear from Fig. 3 that all 5 of the identified anomalous
timesteps provide high values for the detection statistic δt, and
the instances where critical events occur are easily discernible.
Here KOAD was again run with the same thresholds, i.e. ν1 =
0.05 and ν2 = 0.20.

Figure 4 presents a plot of the detection statistic δt, with
KOAD run over a subset of 8 readings (out of the total of 37)
corresponding to a patient’s various ion concentration level
(such as sodium, potassium, chloride, etc) measurements, for
100 timesteps. Pre-labelling of the data set had indicated 7
instances of specific readings being in dangerous territory,
and it is these 7 timesteps that we again desire automated
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Fig. 3. Progression of the detection statistic δt, with KOAD run over a set of
10 blood pressures measurements of a patient across 100 timesteps. Timesteps
corresponding to the identified critical events are indicated as red, filled stems.
Sample experiment with ν1 = 0.05, ν2 = 0.20.

alerting to. Ion and electrolyte levels play a vital role in the
human body, and a deviation of these levels from the normal
range may adversely affect the renal, nervous and respiratory
systems. When these ion concentrations deviate out of the
normal range, the pH level in the body also changes, which can
affect cardiac cell functioning. In such a situation, glycoside
drugs need to be immediately injected into the patient to bring
the heart rate back to normal and subsequently prevent a heart
attack [15].

It is clear from Fig. 4 that all 7 of the identified anomalous
timesteps provide high values for the detection statistic δt, and
the instances where critical events occur are easily discernible.
Here KOAD was again run with the same thresholds, i.e. ν1 =
0.05 and ν2 = 0.20.

D. Complexity Analysis

Storage and complexity issues are paramount to real-time
applications. In terms of storage requirements, the maximum
dimensions of the variables that KOAD stores are m × m,
where m is the dictionary size. The computational complexity
is O(m2) for every standard timestep, and O(m3) on the rare
occasions when an element removal occurs. KOAD complexity
is thus independent of time, making it naturally suited for
online use. Our experiments have shown that high sparsity
levels are achieved in practice, and the dictionary size does not
grow indefinitely. In terms of actual run-time, processing each
37-dimensional timestep took less that one second when run
on a laptop computer with Intel i5TM processor and standard
configuration. This means that it is possible to process multiple
readings taken at one-second intervals, a feature which is likely
to be very convenient in an ICU environment.

E. Parameter Selection

The detection performance of KOAD is primarily a func-
tion of the thresholds ν1 and ν2. Threshold ν1 has the most
direct effect on the detection performance, while threshold ν2
determines the instant flagging of an anomaly. Our experi-
ments have shown that the performance of a setting remains
approximately the same across widely-separated time periods,
and optimum settings may be determined after running the
algorithm over a training set of labeled data using a supervised,
cross-validation approach.

Our experiments have also indicated that the performance
is not particularly sensitive to the choice of the orange alarm
resolution parameters � and ε or the dropping parameters L and
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Fig. 4. Progression of the detection statistic δt, with KOAD run over a
set of 8 ion concentration levels of a patient across 100 timesteps. Timesteps
corresponding to the identified critical events are indicated as red, filled stems.
Sample experiment with ν1 = 0.05, ν2 = 0.20.

d. They may thus be suited to taste depending on how much
of a time-lag is allowable for the orange alarm resolution, for
example level of criticality of the particular patient, and the
storage resources available to the system.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm for
performing automatic, instantaneous detection of emergen-
cies occurring in a hospital Intensive Care Unit (ICU). The
proposed algorithm processes the multitude of vital statistics
continuously being monitored for a critical patient in Intensive
Care, and learns the underlying pattern between the statistics
that is naturally inherent for the particular patient. The algo-
rithm then instantaneously signals a break in this pattern.

The proposed algorithm thus goes beyond the methods
presently in place in typical ICUs, which only alert when
individual measurements cross pre-set limits. It has run times
of the order of hundredths of a second, making it suitable
for such a critical environment. It also does not require any
expensive or sophisticated components, making it suitable for
a hospital in a developing country with financial constraints.
Through application to real data from patients in a cardiac ICU
at a hospital in a developing country, we have shown that it
is possible to easily obtain high detection accuracy with low
false alarm rates.

Our future work will expand the testing on data from a
larger number of patients, investigate the use of supplementary
algorithms to automatically set the KOAD thresholds [16],
[17], and the effectiveness of other machine learning algo-
rithms such as the One-Class Neighbor Machine (OCNM) [18]
and versions of Principal Component Analysis (PCA) [19],
[20] and Kernel Principal Component Analysis (KPCA) [21].
It may be mentioned here that Ahmed et al. have done a lot
of recent work on adaptive, intelligent pattern matching and
anomaly detection [22]–[40], which may also be investigated
for this application.
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