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ABSTRACT

Human action recognition has been a challenging task in com-

puter vision because of intra-class variability. State-of-the-

art methods have shown good performance for constrained

videos but have failed to achieve good results for complex

scenes. Reasons for their failing include treating spatial and

temporal dimensions without distinction as well as not captur-

ing temporal information in video representation. To address

these problems we propose principled changes to an action

recognition framework that is based on video interest points

(IP) detection with capturing differential motion as the cen-

tral theme. First, we propose to detect points with high curl

of optical flow, which captures relative motion boundaries in

a frame. We track these points to form dense trajectories.

Second, we discard points on the trajectories that do not rep-

resent change in motion of the same object, yielding tempo-

rally localized IPs. Third, we propose a video representation

based on spatio-temporal arrangement of IPs with respect to

their neighboring IPs. The proposed approach yields a com-

pact and information-dense representation without using any

local descriptor around the detected IPs. It significantly out-

performs state-of-the-art methods on UCF youtube dataset,

which has complex action classes, as well as on KTH dataset,

which has simple action classes.

Index Terms— Video interest points, action recognition,

dense trajectories, Optical flow

1. INTRODUCTION

Human action recognition has been studied very extensively

due its potential applications in video surveillance, search,

and retrieval. Defining and recognizing a class of actions

is fraught with problems such as large variations in motion,

posture, and clothing of people, as well as variations in scene

illumination and background. A widely applicable solution

to deal with all these variations is yet to come. Until the

advent of standardized action datasets such as Weizman [1]

and KTH [2], comparing techniques was not easy. However,

most datasets and techniques were still based on simplifying

assumptions such as uncluttered background, isolated actions

and static camera until more complex datasets such as UCF11

[3] and techniques such as [4] came about. We compare our

methods on both simple [2] and complex [3] datasets.

Most of the methods for human action recognition can

be classified broadly into two categories [5]: hierarchical and

single-layered approaches. Hierarchical approaches break a

complex activity into simple activities or sub-events. Mul-

tiple layers of sub-events are constructed for the analysis of

complex activities. Such methods however, are more complex

and recognition of the high level activities run into problems

if the sub-events or low-level activities are not reliably recog-

nized. On the other hand, single-layered approaches tend to

be faster and more suitable for real time applications because

these recognize actions directly from the video. These are

further classified into two categories: Space-time approaches

and sequential approaches. Space-time approaches tend to be

the fastest because they do not consider temporal order un-

like sequential approaches and are further divided into three

categories: those based on space-time volumes, trajectories,

and interest points. Our method is based on trajectories and

interest points while it also partly incorporates elements of

sequential approaches to incorporate the advantages of these

three groups of techniques.

A lot of action recognition methods have been proposed

based on interest points (IPs) such as [6], [7], and [8] which

are characterized by their detectors, descriptors and fusion

methods. Although many interest point detectors have been

proposed for videos such as STIP [9], selective-STIP [4],

Cuboid [10], n-SIFT [11], Mo-SIFT [12] , curl of optical flow

(COF) [13] etc., except Mo-SIFT and COF all other meth-

ods treat temporal dimension in a manner similar to the two

spatial dimensions, thus extending 2-d spatial interest point

detectors to 3-d. This is not appropriate as shown in [13]

because of unique properties of temporal dimension such as

object persistence and smoothness. We extend this approach

significantly based on three contributions that capture our

proposed theme that differential motion has important infor-

mation about an action.

Our first contribution is to use and extend the interest

point detector proposed in [13] that was based on unique

properties of the time axis, and captured points on relative

motion boundaries. The threshold applied to curl of opti-

cal flow was fixed in [13], which led to large variations in
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Fig. 1. Block diagram of the proposed action recognition system.

the number of IPs across videos. We introduce an adaptive

thresholding which gives a sparse set of meaningful points.

Temporal localization of IPs by discarding uninformative

points on trajectories can reduce memory requirements and

increase information density of a video representation. Some

methods for IP-based action recognition have used temporal

localization [9], [11] but they don’t mention it as an explicit

intermediate goal. Our second contribution is to use and show

utility of temporal localization.

To extract IP descriptors a 3D volume around the inter-

est point is considered. Further, to get a fixed-dimensional

vector representation of a video, descriptors from a varying

number of IPs of a video are fused using different methods

such as bag-of-words (BoW) [14] and latent Dirichlet allo-

cation (LDA) [15]. Such fusion methods lose the temporal

order of IPs which can contain discriminative information,

although some temporal information can be captured in their

descriptors. Our third contribution is to propose a video rep-

resentation that captures temporal information and gives a

compact fixed-dimensional representation of a video.

2. PROPOSED ALGORITHM

Video classification using interest points has three major

parts – IP detection, video representation, and classifica-

tion. Differential motion, whether it is between objects or

between close-by time instants for the same object, contain

important information about action classes. Such informa-

tion is somewhat lost in local IP descriptor-based methods

especially when descriptor fusion methods (such as bag-of

words) are also used. The proposed algorithm combines the

desirable features of these three parts of video classification

algorithms. First, we detect IPs based on a modification of

COF[13], which captures only points associated with action.

These points are tracked to obtain dense trajectories, cap-

turing temporal information. Then, we perform temporal

localization and prune uninformative points by retaining only

an informative subset of points on the trajectories. Next, we

compute a video representation for classification that is based

on spatial and, more importantly, temporal distances between

consecutive retained points on the trajectories, thus capturing

information important for action recognition. These inno-

vations have yielded substantial improvements compared to

state-of-the-art on benchmark datasets. We now describe

each module as shown in Fig. 1 in more detail as follows:

Adaptive interest point detection: Optical flow captures

object persistence and smoothness in time dimension. The IP

detector proposed in [13] was based on curl of optical flow to

capture the relative tangential motion between objects such

as foreground and background. For the optical flow (velocity)

vector
−→
V of a point in a frame expressed as a linear com-

bination of unit vectors in
−→
i and

−→
j in x and y directions

respectively as Vx

−→
i + Vy

−→
j , the curl is defined as:

∇×
−→
V =

∂Vx

∂y
−

∂Vy

∂x
(1)
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∣
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is greater than a threshold T at a point, and it

is also a spatial local maxima then we consider it as an in-

terest point. In [13], the threshold T was fixed across videos,

which caused the following problems due to scene change be-

tween videos. While a high threshold yields too sparse IPs for

certain videos, a low threshold introduces spurious IPs based

on non-zero curl due to background movement, noise, and

video compression artifacts that vary from scene to scene. We

adapted the threshold for each video according to the base

level of curl magnitude that occurs even when there is no ac-

tivity in that scene. We computed the threshold separately for

each video as follows:

Ti = median
j

(max
k

(
∣

∣

∣
∇× ~Vijk

∣

∣

∣
)) (2)

where

∣

∣

∣

∇× ~Vijk

∣

∣

∣

denotes the curl magnitude of point k in a

video frame j for video i.

Tracking: After detecting points in each frame, tracking

was done using KLT tracker [16]. Trajectories tend to drift

during tracking because of noise. Hence, we fixed the trajec-

tory length to 15 frames as suggested in [8].

Pruning-based temporal localization: Temporal localiza-
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Fig. 2. Illustration shows the trajectory of an interest point.

Red dots are the temporally localized points. Change in slope

is indicated by the angle.

tion was done based on the change in the direction of trajec-

tory as an indicator of its unpredictability, as shown in Fig. 2.

If the angle between the tangents at a point and its predecessor

on a trajectory was more than 20◦, then the point was retained

otherwise it was pruned.

Video representation: Since we do not use any IP descrip-

tor, we retain spatial and, importantly, temporal information

associated with motion of an action by capturing the relation

between consecutive temporally localized (unpruned) points

on the trajectories. This information is characterized by both

distance and angle between these points. Weighted orienta-

tion histograms of projections of line segments connecting

consecutive retained IPs on to xy, yt and tx planes, were cal-

culated, where x and y denotes the spatial dimensions of the

frame and t denotes the time dimension. The weight (con-

tribution) was proportional to the length of the line segment,

while the bin was decided by the orientation of its projection

on that plane. The histogram had 36 bins dividing the an-

gle range of 0◦ to 180◦ into intervals of 5◦. Histograms for

the three planes were concatenated together and normalized

to form the video representation.

Classification: After forming a compact video represen-

tation, we used it as input for an SVM to classify the actions.

This is similar to a lot of state-of-the-art methods.

3. EXPERIMENT AND RESULTS

We compared the performance of our proposed technique

with several state-of-the-art and a few pioneering legacy

techniques on a simple and a complex video action datasets.

Dataset description: KTH database consists of simple

scenarios of six types of human actions - walking, jogging,

running, boxing, hand waving and hand clapping [2]. The

actions were performed by 25 subjects in different scenarios

such as outdoors and indoors, with different scale and cloth-

ing variations. UCF 11 is a complex data set with videos

taken from the wild, and consists of 11 action categories

- basketball shooting, biking/cycling, diving, golf swinging,

horse back riding, soccer juggling, swinging, tennis swinging,

trampoline jumping, volleyball spiking, and walking with a

dog [3]. This dataset has variations in camera motion, object

appearance and pose, object scale, viewpoint, background

clutter, illumination conditions, etc. For each category, the

videos are grouped into 25 groups with more than 4 clips in

each group. The video clips in the same group share some

common features, such as the same actor, similar background

or viewpoint. It has been suggested to use entire groups in-

stead of splitting their constituent clips into training or testing

sets (specifically, leave-one-group-out) to test robustness of

action recognition techniques to unseen scene variations.

Table 1. Comparison of the average accuracy of the proposed

method with state-of-art methods on KTH dataset. Methods

not based on IPs are denoted by ∗.

Methods Accuracy(%)

Proposed method 98.20%
∗Jhuang et. al. [17] 96.00%

Mo-SIFT [12] 95.80%

Kovashika et. al. [6] 94.53%

Gilbert et. al. [7] 94.50%

Wang et. al. [8] 94.20 %

COF [13] 93.40%

Laptev et al. [9] 91.80%

Cuboid [10] 80.00%

Experimental setup: Classification of actions was done

using Libsvm package [20]. Best parameter selection was

done using 3-fold cross-validation on testing dataset. KTH

dataset was divided into 80% training and 20% testing set

randomly. The accuracy was averaged over several ran-

dom selections of training and testing data. For UCF11

dataset we have followed the leave-one-group-out cross-

validation(LOOCV) approach as suggested in [3]. LOOCV

scheme leads to 25 cross-validation results for each action

class, which were averaged.

Action recognition results: Table 1 and Table 2 show

comparison of action recognition performance of the pro-

posed method and state-of-the-art methods. KTH dataset

contains simple actions in constrained environment for which

state-of-the-art methods have already achieved good results.

Table 2. Comparison of the average accuracy of the proposed

method with state-of-art methods on UCF11 dataset. Methods

not based on IPs are denoted by ∗, and methods that don’t

seem to have used LOOCV scheme for testing are denoted by
?.

Methods Accuracy(%)

Proposed method 91.30%

Wang et. al. [8] 84.20 %
∗?Mota et. al. [18] 75.40 %

∗Ikizler-Cinbis et. al. [19] 75.21 %

Liu et. al. [3] 71.20%
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Fig. 3. Inter- and intra-class squared distances for the pro-

posed video representation for (a) KTH and (b) UCF11

datasets.

The proposed method showed better results than other meth-

ods that use IPs for KTH dataset and almost as good as more

complex methods, as shown in Table 1. Importantly, for

UCF11 dataset, the proposed method outperformed all the

state-of-the-art methods, including those not based on IPs, as

shown in Table 2.

Class separation: We have also shown the discriminative

ability of the proposed video representation by comparing

inter- and intra-class mean-squared distance in Fig. 3. The

graph shows low inter-class and high intra-class variance,

which indicates that the distinctness factor of descriptors are

high for most classes for both the datasets.

Impact of adaptive threshold: As shown in Fig. 4, the

proposed thresholding method improved the quality of IPs

detected when compared with the COF [13] and selective-

STIP [4], which have shown to yield more meaningful IPs

than other techniques. Our interest point are sparse as well

as on the boundary of the moving object where relative mo-

tion is large whereas in case of selective-STIP and COF the

number of IPs is either too large (some of which are on the

background) or IPs are not exactly on the boundary of moving

object. Motion boundary is important for characterizing an

action when the background is not static.

Impact of temporal localization: The proposed method

has shown a drastic improvement with temporal localization

as shown in Table 3. The reason is that our video repre-

sentation was based on orientation of connecting temporal

localized points on the trajectories, and does not use local

descriptors commonly used in other IP-based video repre-

Table 3. Comparison of the average accuracy of the proposed

method with and without temporal localization.

Ineterest point extraction KTH UCF11

With temporal localization 98.2% 91.3%

Without temporal localization 57.2% 39.5%

(a) (b)

(c)

Fig. 4. Example of interest points of the proposed method (a)

with adaptive threshold, (b) with fixed threshold [13], and (c)

Selective-STIP [4]

sentations. These points are action-specific which results

in different histogram for different actions. If we consider

all the points on the trajectories rather few points then most

of the consecutive pairs of points will have small changes

in orientation, and will contribute to only a few bins of the

histogram. This will make it difficult to distinguish between

action classes.

4. CONCLUSION

We proposed a video representation for action recognition

that performs better than state-of-art methods on two widely

used benchmark datasets. We detect IPs on motion bound-

aries to discard moving background, and retain only those IPs

that represent new information based on large change in tra-

jectory direction. Thus it is much more compact than using

entire trajectories. Additionally, we have shown that temporal

localization plays an important role in improving the informa-

tion content in certain video representations where local IP

descriptors are not used. We conjecture that using temporal

localization will improve the performance of video represen-

tations based on local IP descriptors as well. In future, this

work can be extended for testing on large class database such

as Hollywood dataset and UCF101 dataset. Scale and view

point invariance can also be introduced in the video represen-

tation to further improve the performance [21].
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[2] Christian Schüldt, Ivan Laptev, and Barbara Caputo,

“Recognizing human actions: a local svm approach,”

in Pattern Recognition, 2004. ICPR 2004. Proceedings

of the 17th International Conference on. IEEE, 2004,

vol. 3, pp. 32–36.

[3] Jingen Liu, Jiebo Luo, and Mubarak Shah, “Recog-

nizing realistic actions from videos in the wild,” in

Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on. IEEE, 2009, pp. 1996–2003.

[4] Bhaskar Chakraborty, Michael B Holte, Thomas B

Moeslund, Jordi Gonzalez, and F Xavier Roca, “A se-

lective spatio-temporal interest point detector for human

action recognition in complex scenes,” in Computer Vi-

sion (ICCV), 2011. IEEE, 2011, pp. 1776–1783.

[5] Jake K Aggarwal and Michael S Ryoo, “Human activity

analysis: A review,” ACM Computing Surveys (CSUR),

vol. 43, no. 3, pp. 16, 2011.

[6] Adriana Kovashka and Kristen Grauman, “Learning

a hierarchy of discriminative space-time neighborhood

features for human action recognition,” in Computer Vi-

sion and Pattern Recognition (CVPR), 2010 IEEE Con-

ference on. IEEE, 2010, pp. 2046–2053.

[7] Andrew Gilbert, John Illingworth, and Richard Bow-

den, “Action recognition using mined hierarchical com-

pound features,” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 33, no. 5, pp. 883–

897, 2011.

[8] Heng Wang, Alexander Kläser, Cordelia Schmid, and
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