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ABSTRACT

Gussian image smoothing is a fundamental operation in the extrac-
tion of scale-invariant feature points. Its computation, however, can
be too expensive in some resource-constrained scenarios. Alterna-
tive solutions such as the box filter can be computed more efficiently,
at the cost of a loss in feature repeatibility under some conditions. In
this paper we propose a fast and accurate image smoothing operator
based on integral images. It has the same order of computational
complexity as the box filter, but provides much more accurate visual
results and improved keypoint repeatability, which is confirmed in a
feature detection scenario using SIFT features.

Index Terms— Image smoothing, scale space, box filter, Gaus-
sian filter, SIFT

1. INTRODUCTION

Low pass image filtering (smoothing) is a basic operation in many
image processing applications, including image matching through
local features. For instance, Gaussian smoothing is used to gener-
ate a scale space and detect interesting points in a scale-invariant
manner [2]. While this approach can provide very stable keypoints,
its computation may not be feasible when power or battery resources
are limited. As an alternative, one can use simpler and faster smooth-
ing techniques such as the box filter [6], although this can imply
lower feature matching performance under some transformations.
The trade-off between computational efficiency and accuracy of the
smoothing filter is therefore a key factor in the stability and repeati-
bility of extracted features.

In this paper we introduce a fast and accurate image smoothing
filter based on integral images. In terms of computational complex-
ity, the proposed approach is similar to the box filter, as the response
is computed in constant time at any image point and any smoothing
level. However, our filter provides improved rotational invariance
and a better approximation of Gaussian smoothing.

The rest of the paper is organized as follows. In Section 2 we
review some useful properties of the Gaussian and the box filter. Sec-
tion 3 describes the proposed filtering approach in detail. In Section
4 we illustrate the results and performance of the proposed filter, in
terms of computation time and rotational invariance, and evaluate its
use in a keypoint detection scenario. Finally, Section 5 concludes
the paper.

2. BACKGROUND AND RELATED WORK

Image smoothing is a well-explored research area. Some recent
works in it are focused on complexity reduction, e.g. [1]. The focus
of this paper is image smoothing complexity in context of salient
visual point detection.

2.1. Gaussian smoothing

Bi-dimensional Gaussian filter is one of the most commonly used
image smoothing operators. To smooth an input image f(x, y) up to
a given smoothing level σ, one would typically compute the follow-
ing quantity:

fout(x, y, σ) =
1

2πσ2

∫∫
R2

f(x, y)e
− (x−u)2+(y−v)2

2σ2 dudv. (1)

Thanks to the exponential decay, the integral may be contracted to a
reasonably compact support, for example applying the well known
rule of 3σ [2]. Moreover, the convolutional kernel is separable, al-
lowing to replace the two-dimensional convolution by two simple
ones. The numerical filter, obtained by replacing the integrals by
integer summations, has linear complexity in function of σ for com-
puting the response in a given spatial point. In other words, discrete
version of fout(x, y, σ) at a given point (x, y, σ) may be computed
in O(σ) operations.

We recall in the following two important properties of the Gaus-
sian filter:

Relation to the heat diffusion equation. It is known that the
expression (1) is the solution of the differential problem for the heat
diffusion equation. The input image becomes the initial condition of
this problem, and the amount of injected smoothing σ is related to
the diffusion time. This enables to establish a set of important prop-
erties, allowing to use this filter to engender a proper scale space [3].
The latter may be understood as a representation of the internal im-
age structure at multiple scales. This kind of representations is pre-
dominant in vision problems, such as keypoint detection for image
matching [4].

Rotational invariance. The Gaussian convolutional kernel is
radially symmetric. This implies perfect invariance of the filter re-
sponse to in-plane image rotations.

A notable successful application of the Gaussian smoothing mo-
tivated by these properties is SIFT image features [2]. Similarly,
the Gaussian scale space is employed in the MPEG Compact De-
scriptors for Visual Search standard [5]. However, due to the linear
computational complexity, this filter has been systematically criti-
cized [6, 7, 8, 9], and approximate solutions such as the box filter
have become popular.

2.2. Box filter

The box filter response is given by the following expression:

fout(x, y, s) =
1

s2

x+ s
2∫

x− s
2

y+ s
2∫

y− s
2

f(u, v)dudv (2)
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The filter thus may be seen as a convolution with a kernel taking
a constant value within the rectangular support Ω = [− s

2
, s

2
] ×

[− s
2
, s

2
], i.e., taking the average image value in Ω. Here s repre-

sents the scale parameter, or the amount of smoothing required on
the output. Integral image technique [10] allows to avoid the ex-
plicit computation of the integral, providing constant computational
complexity, i.e., independent of the amount of smoothing s, provided
that the integral image has been precomputed. This principle is il-
lustrated on Fig. 1. Due to its simplicity and efficiency, the box

A B 

C D 

O 

𝑆𝐴𝐷 = 𝑆𝑂𝐷 − 𝑆𝑂𝐵 − 𝑆𝑂𝐶 + 𝑆𝑂𝐴 

Fig. 1. Integral image principle. For a given function, the integral
over any rectangle AD may be computed immediately, if for any
pointX on the plane the integral overOX is known. The latter ones
are precomputed once during the filter initialization stage, and form
the integral image (the rectangles are denoted by their diagonals).

filter is largely used in different applications and scenarios. Some
complex image filters, such as the guided filter [11] or some bi-
lateral filter variant [12], employ the box filtering. In the vision
applications, the box filter is often used to approximate the time-
consuming Gaussian scale space in SIFT-like detectors. Thus, [7]
proposes to select the keypoint candidates in a Difference-of-Mean
(DoM) image pyramid built with the box filtering instead of the orig-
inal Difference-of-Gaussian pyramid. In a similar way integral im-
ages [8] and their generalizations [9] are combined with SIFT de-
tection strategy. Speeded Up Robust Features (SURF) [6] also make
use of the box filtering for the keypoint detection. Center Surrounded
Extrema (CenSurE) detector [13] uses slanted integral images to de-
tect the interesting points without computing explicitly a pyramidal
representation. BRISK [14] employs the box smoothing to compute
the descriptor.

An issue when using the box filter in vision problems comes
from its sensitivity to rotations. Due to the sharp corners of the rect-
angular convolutional kernel, rotating the input image of 45° may
drastically change the distribution of interesting points with respect
to the structure of the image. For instance, it is known that SURF
features suffer from limited rotational invariance, which is partially
due to the use of box filtering [6].

3. THE PROPOSED FILTER DESIGN

3.1. Filter kernel definition

The key idea of the proposed approach consists in approximating
the Gaussian kernel by a function that can be computed using image
moments, which are efficiently represented by the integral images.

Let us consider the following function:

K(x, y) = A−B(x2 + y2), (3)

where A and B are constants. It is straightforward to show that the
convolution F of the image with this kernel may be decomposed as

follows:

F (x, y, s) =

∫∫
Ω

f(u, v)K(x− u, y − v)dudv

=
[
A−B(x2 + y2)

]
I1(x, y, s)−BIx2+y2(x, y, s)

+2B [xIx(x, y, s) + yIy(x, y, s)] (4)

The integrals I(·) denote image moments. Specifically, I1 is the zero-
order moment that is equivalent to the box filter output, Ix and Iy are
first-order moments with respect to x and y, and Ix2+y2 is the sum
of two second-order moments:

Ix(x, y, s) =

∫∫
Ω

uf(u, v)dudv (5)

Iy(x, y, s) =

∫∫
Ω

vf(u, v)dudv (6)

Ix2+y2(x, y, s) =

∫∫
Ω

[
u2 + v2] f(u, v)dudv. (7)

The main point of using K as the filter kernel is that all the image
moment integrals may be computed in constant time using the in-
tegral image technique: an integral image is precomputed for each
image moment and is then used to obtain the required value. There-
fore, the convolution F may be computed inO(1) operations for any
x, y and s.

To design a suitable filter whose response is expected to be close
to the Gaussian filter, we need to choose proper values of A and B.
This is done assuming that

1. K must be nonnegative within the support Ω, in order to have
a smoothing filter,

2.
∫∫

Ω
K(u, v)dudv = 1,

3. there is a linear relation between the scale parameter and the
standard deviation of the Gaussian filter, e.g. s = Cσ.

To satisfy the first constraint we simply set A = Bs2

2
. The sec-

ond one then gives directly the kernel normalization constant:∫∫
Ω
K(u, v)dudv = A2 − Bs4

6
= Bs4

3
. Dividing the kernel

by this value and applying s = Cσ we obtain the filter kernel
expression:

K(x, y) =
3

2s2
− 3

s4
(x2 + y2) =

3

Cσ2

(
1

2
− x2 + y2

σ2

)
. (8)

We finally tune the constant C to minimize the total squared dif-
ference between K and the Gaussian kernel, i.e. in order to assure
the response close to the Gaussian one, obtaining C ≈ 3.5. The
resulting kernel K is shown in Figure 2.

3.2. Continuous response computation

To achieve subsample precision with the designed filter, a specific
interpolation has to be applied to the integral images. The inter-
polation coefficients are derived assuming that the input image is a
piecewise constant function having a constant value at each pixel
position. Then,

• I1 is piecewise constant,

• Ix and Iy are piecewise linear in x and y respectively,

• Ix2 and Iy2 are piecewise quadratic, Ix2+y2 = Ix2 + Iy2 .
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Fig. 2. Bi-dimensional Gaussian filter kernel of unit variance (left)
compared to the proposed filter kernel (right). It provides a more
accurate (closer to the Gaussian) output than the box filter, but the
convolution may still be computed in O(1) operations as the kernel
surface is polynomial.

Image moment ξ η

I1 α β

Ix α
2x0 + α

2x0 + 1
β

Iy α β
2y0 + β

2y0 + 1

Ix2 α
3αx0 + 3x2

0 + α2

3x2
0 + 3x0 + 1

β

Iy2 α β
3βy0 + 3y2

0 + β2

3y2
0 + 3y0 + 1

Table 1. Interpolation coefficients for integral images of the image
moments.

It can be shown that the exact value of each image moment may
be obtained through a linear interpolation with proper weights of the
four closest neighbors of each vertex of the support Ω. Specifically,
let x = x0 +α, y = y0 +β, where x0 ∈ Z, y0 ∈ Z, and 0 ≤ α, β <
1. Let J represent the integral image of a given image moment. Then

J(x, y) = [(1− ξ)J(x0, y0) + ξJ(x0 + 1, y0)] (1− η)+

+ [(1− ξ)J(x0, y0 + 1) + ξJ(x0 + 1, y0 + 1)] η, (9)

where the weights ξ and η in function of x, y, α and β are given in
Table 1.

4. EXPERIMENTS AND DISCUSSION

In this section we compare the proposed approach notably to the
original box filter. Our test data consists of several natural images
acquired with a DSLR camera. In all our experiments, the box filter
support size is defined as 2.6σ, which is a known convention when
one tries to approximate the Gaussian. [14] As for the implementa-
tions of SIFT features and the separable convolution with Gaussian
kernel, we take VLFeat library. [15]

4.1. Qualitative assessment

We first evaluate the proposed approach visually. Some filtered im-
ages are presented on Fig. 3. ”Phantom contours” along the real
edges in the box filter output appear due to the kernel discontinuity

near the support boundaries; their displacement is therefore related
to the support size s. Typically, this kind of visual artifacts of low-
pass filtering are undesirable. As the proposed filter has continuous
falloff to the corners of Ω, the ”phantom contours” are attenuated in
the resulting image. However, they do not disappear completely as
some discontinuities are present near middle points on the sides of
the square support region (see Fig. 2).

(a) Input image (a) Gaussian filter

(b) Box filter (c) Proposed filter

Fig. 3. An input image fragment of 600*600 pixels and filter outputs
for σ = 20.

4.2. Rotational invariance

As it is discussed before, the invariance of the filter response to im-
age rotations is a very desirable property in some cases. In this ex-
periment we study the rotational invariance of our proposed filter.
We proceeded as follows:

• an input image H is first smoothed to a level σ and stored to
H0,

• H is then rotated by angle a, smoothed with the same value
of σ and then rotated back giving Ha,

• H0 is finally compared to Ha in a pixelwise manner. The
difference between the images is evaluated in terms of PSNR.
To avoid sampling artifacts at this point, σ is chosen large
enough.

The experiment is repeated for several values of a from a given
range.

A filter stable response to the image rotations will imply the ro-
tated smoothed image Ha close to the smoothed image without ro-
tations H0. The more invariant a filter is, the closer the two images
should be. As it is explained before, the Gaussian filter reveals per-
fect rotational invariance.

We perform this experiment on a set of 5 different images (in-
door and outdoor photos of 4.5 megapixels), smoothing each of them
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Image σ Gauss.1 Box Proposed
resolution tS , ms tI , ms tS , ms tI ., ms tS , ms

1 86
2 134

1.1 Mpix 4 237 13 34 63 124
8 433

16 865
1 418
2 611

4.5 Mpix 4 994 49 135 260 502
8 1823

16 3543
1 968
2 1381

10.1 Mpix 4 2264 110 300 579 1102
8 4084

16 7905

Table 2. Computation times for different filters in function of input
image resolution and smoothing level σ. Each value is averaged over
10 repetitions.

with 3 values of σ: 5, 10 and 20, resulting in 15 cases per each
value of the rotation angle a. The averaged results in function of a
are presented on Fig. 4. The proposed filter clearly demonstrates a
more stable response to image rotations than the box filter. More-
over, obtained PSNR values justify the visual similarity between the
Gaussian and the proposed filter, which is illustrated on Fig. 3.
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Fig. 4. Rotational invariance of the proposed filter vs the box filter.
An image is rotated, smoothed and rotated back. The result is then
compared to an image smoothed without rotations. Averaged results
of 5 images and 3 levels of σ per each rotation angle are shown.

4.3. Computational time

In this section we evaluate the computational time of the proposed
approach. The results for different values of σ and different input im-
age resolutions are presented in Table 2. For each filter we present
the smoothing time tS and the initialization time tI . The latter com-
prises the integral images computation.

4.4. Keypoint detection

We finally test the proposed filter in a keypoint detection scenario.
Similarly to [7, 8] we replace the Gaussian scale space in the SIFT
keypoint detector by image pyramids generated using our proposed
filter and the box filter. Following a classic local feature evaluation

1To have a fair comparison, we disabled the use of SSE2 instructions in
VLFeat library in these tests.

procedure [16], we study the repeatability of detected local features
obtained with different smoothing operators by means of matching
score, i.e. ratio between the number of correctly matched features
between two given images and the minimal number of detected fea-
tures for these two images. We evaluate the features repeatability
with respect to the in-plane image rotations. The resulting matching
scores obtained with several different image sequences are presented
on Fig. 5.

The proposed filter demonstrates stable repeatability gain with
respect to the box filtering. The performance could be further im-
proved by properly tuning the detector to the filter output.
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Fig. 5. Matching scores subject to in-plane rotations achieved by
SIFT features detected with different filters. Three different im-
age sequences of 1296*864 pixels representing in-plane rotations are
matched against the corresponding upright images.

5. CONCLUSION

In this paper we proposed an efficient and accurate image smooth-
ing operator, that provides a good trade-off between fast box filter-
ing and classic Gaussian smoothing. Based on the integral images,
our proposed filter inherits the ability of the box filter to compute
the response in a constant time at any given point (x, y, σ). This
makes the approach particularly useful not only in feature match-
ing applications, but also in cases where a non-structured smoothing
is required, for example a non-uniform spatially adaptive filtering.
Further efficiency improvements are possible, e.g., by using multi-
threading for initialization or vectorial processor instructions.
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