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ABSTRACT

Traditional Exemplar-SVMs (ESVM) require millions of
negative samples to establish a linear exemplar detector.
However, Exemplar Linear Discriminant Analysis (ELDA)
can achieve similar performance while avoid negative sam-
ples mining. To construct a strong object classifier, Multiple
Instance Learning (MIL) is used to combine exemplar de-
tectors and reduce annotation ambiguity. By applying MIL
to Exemplar-LDA (ELDA), we simplify the training process
and achieve better performance than ESVM on object detec-
tion. Moreover, exemplar models can transfer the available
meta-data (segmentation, geometric structure, etc.) of train-
ing samples directly onto the detected objects, which provide
more accurate and richer attributions than the detection re-
sults of a bounding box.

Index Terms— Linear Discriminant Analysis, Exemplar
classifier, Multiple Instance Learning, Meta-data transfer

1. INTRODUCTION

Object detection has experienced a long time of devel-
opment history and formed several classical frameworks,
e.g., wavelet-based Adaboost detector, HOG and SVM
classifier[1], Deep Learning[2, 3, 4], Deformable Part-based
Models [5] and so on. Unfortunately, it is hard for these
frameworks to interpret object attributes till ESVM[6, 7, 8]
came into being. Typical object detection model just put a
coarse bounding box around the object and assign a category
tag, but ESVM aims to form a simultaneous association be-
tween the detected object and one single exemplar among
the training samples. In this way, the exemplar meta-data
(segmentation, geometric structure, 3D models, etc.) can be
transferred with the detection results, which provide more
detailed object attributions about the overall object under-
standing. That is to say, ESVM not only answers ”What it
is?” but also explains ”What it is like?”[9, 10]. This distin-
guished characteristic of ESVM resembles much closely to
our human being thinking pattern.

*Corresponding author. This work is supported by NSFC 61175009 and
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The second critical characteristic of ESVM is that, in-
stead of training a classifier for one class, it builds an individ-
ual linear detector for each exemplar of one training sample
class. Therefore, there is no need to map various features to
a common space during the exemplar-specific learning pro-
cess. A linear SVM detector, learnt from only one positive
exemplar and millions of negatives, is quite specific to its cor-
responding positive exemplar. Each ESVM objective func-
tion is convex and can be optimized independently. Then, a
nearest-neighbor approach is used to aggregate these individ-
ual linear SVM detectors to form a monolithic linear SVM
classifier for an object class, in order to achieve the detection
performance comparable with much more complicated latent
part-based model [11].

For constructing a linear SVM object classifier, ESVM
has to search millions of negative samples for hard ones as its
support vectors. Unfortunately, this procedure is quite time
consuming and will be intractable as the number of categories
increases. To overcome this obstacle, Hariharan et al. revisit
a classical method, Linear Discriminant Analysis (LDA), to
demonstrate ELDA models [12, 13] can be trained economi-
cally.

As usual, supervised learning methods require a large
quantity of annotated training samples. But in some real en-
vironment, it is difficult to assign obvious labels to all train-
ing samples. Babenko proposes a learning paradigm called
Multiple Instance Learning (MIL)[14, 15, 16] which allows
ambiguously labeled data for training process. Tuchiya et al.
present the Exemplar Network [17] to find the best possible
mixture of specific exemplar-based detectors to form a gen-
eralized mixture model. It is also inspired by ELDA models
and maintains meta-data transfer function. This general and
concise network can be applied to various applications with
comprehensive understanding.

2. OVERVIEW

Based on MIL and ELDA, our model makes use of ESVM
fundamental framework as well as its intensive understanding
of the scene. Firstly, we builds a discriminative linear LDA
detector for each exemplar instead of a linear SVM detector.
Then, we employ MIL to establish a monolithic classifier for
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an object class on the basis of various separate LDA detec-
tors. These two training processes make our model not only
distinguish every specific exemplar but also identify an ob-
ject class. Last but not least, it remains the intrinsic factor of
exemplars meta-data (segmentation, geometric structure, etc.)
transfer function.

HOG Feature Extraction
- = N

A Discriminative detector for Each Exemplar

Fig. 1. Our model’s main workflow of object detection.

3. MODEL LEARNING ALGORITHM

3.1. ELDA Classifier

A specific detector for each exemplar is trained from one sin-
gle positive instance and millions of negatives. Typically, an
exemplar-specific linear SVM detector has to mine a large
amount of negative samples to find hard ones as support vec-
tors. For one exemplar, its negative-mining process usually
integrates numerous iterations and costs a long computaitonal
time. At each iteration, many negative samples are mined to
search for the support vectors. For L training samples (typi-
cally hundreds in PASCAL VOC 2007 for one category) and
T mining iterations for each exemplar, the entire iteration re-
quires T * L times. Taking the time consumption of each
iteration into account, the mining process for an object class
is quite expensive.

On the contrary, a linear LDA detector does not need the
mining iteration process, so that we can build a discriminant
linear LDA detector for each exemplar to skip the costly min-
ing process, and achieve similar detection performance.

Given the training samples X = [z1, X2, - ,z] and the
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corresponding class label y;e{—1, 1} of z;. = without the sub-
script represents the testing samples. A linear LDA detector
can be described as follows:

frpa(z) =wlips - (1)

where wrpa = €71 (2; — o), and x; is the HOG feature vec-
tor extracted from each specific exemplar. It is closely related
to the object class but has restored continuity of background
contours. According to Eq.(1), LDA makes the positive fea-
ture x;, centering it with iy and whitening it with €1, which
suppresses the contours of background.

The covariance ¢ is computed over all training samples
regardless of class labels. As Hariharan et al.[12] mentioned,
the number of training samples belonging to an object class is
usually small compared with the whole windows, so a generic
and object independent i is enough. Therefore, the back-
ground template of o and £ only need to be estimated once,
and can be reused for all object classes.

The scale and translation invariance can further simplify
dimension variance problem of the background template.
From windows of different scales and translations, the small-
est unit of negative vector (o and covariance £ can be ob-
tained. We repeat them to the corresponding dimension of z;
for the LDA model. In this way, we generate a specific LDA
detector for each exemplar from the training samples without
hard negative mining.

3.2. MIL for monolithic classifier

As usual, the exemplar-based method will regulate scores
of detection results from each exemplar with the nearest-
neighbor approach[6], in order to get these scores comparable
and preliminary classifiers associated.

However, the nearest-neighbor approach failed to figure
out whether each detection window deserves its score or not.
To further work it out , we construct a monolithic object clas-
sifier based on MIL paradigm to distinguish these detected
windows without specific labels. As a supervised learning
paradigm, MIL can construct a classifier from training sam-
ples with some ambiguous labels.To deal with ambiguously
labeled samples, MIL trains the samples in the unit of bags
and gives each bag a certain label. For the binary classifica-
tion, the assumption in MIL is that a positive bag contains
one positive sample at least, and a negative bag only con-
tains negative samples. Thus, the training samples are the
bags {X1, Xo,- -+, X,,} and the bag labels {y1,y2, -, yn},
where X; = {zij1,Zi2, " ,Tim}» X;€X and y;eY. Gen-
erally, X = RY is the d-dimensional Euclidean space, and
Y ={0,1}. y;, = 2y; — 1 € {—1, 1} can also be defined.The
goal of MIL is to train a bag classifier H(X;) : X™ — Y.



We formulate the objective function of MIL:

oL
minmin lw|l5 + C’Zij €ij )

Yij w,0,€

s.t.yij = O7Vz|yL =0
Z]. yij = L, Vily; =1
Yij(w-xij +0) > 1 — €

where ¢;; > 0 is the slack variable for each point x;;, because
the data may not be separated absolutely. It attempts to re-
cover the latent variable y;; of every training sample, includ-
ing negative samples in positive bags. Setting SVM classifier
penalty coefficient C,, = [C;F,C], use 10-fold cross vali-
dation approach to regulate it. Through the cross validation,
each positive sample package and negative sample package
have been taken as a validation sample and a training sam-
ple. Under a set of parameters, we will get 10 groups of av-
erage object detection rate AP;(i = 1,2,---,10). Calculate
the mean number of these ten APs, referred to as AAP, and
compare values of AAPs under different penalty parameters.
The penalty coefficient C,, and classifier [w, b] correspond-
ing to the maximum AAP value is the monolithic category
classifier which MIL process finds. Once getting these vari-
ables, a linear SVM classifier [w, b] for one category will be
generated. A monolithic category classifier here can filter out
testing results from individual exemplar detectors, increasing
the average accuracy rate of object detection.

4. EXPERIMENTAL EVALUATION

We evaluate the object detection results of our model on the
widely used benchmark dataset, PASCAL VOC 2007. The
detection results are compared with that of ESVM model and
ELDA model respectively. Moreover, we vividly present its
ability of meta-data transfer which shows a good alignment
between training exemplars(segmentations and geometries)
and their related objects.

We select four categories of rigid bodies, cars, sofas,
trains and aeroplanes from the benchmark samples to per-
form object detection and performance analysis. Under the
same accuracy, the meta-data transfer effect of these cate-
gories is more obvious. Due to the fact that their meta-data
are incomplete, we supplement them manually. Given these
training samples, we construct an image pyramid for every
single image and convert each layer of the image pyramid
into the HOG space.

Experimental evaluation is conducted in two aspects: the
object detection average accuracy rate (AP) and the corre-
sponding Precision-Recall Curve. The average accuracy and
the related parameter settings are listed in Table1 and Table?2.

According to the statistical data in Tablel, ELDA model
achieves similar performances as ESVM model on the whole.
It proves that a LDA detector can indeed replace a SVM
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Table 1. Experimental results

Category Average Precision
ESVM | ELDA | Our model
car 66.8% | 75.0% 93.2%
sofa 30.6% | 33.4% 55.8%
train 58.1% | 53.6% 65.7%
aeroplane | 47.7% | 49.1% 69.6 %

Table 2. Sample parameter settings

Detailed Setting Numbers
Category exemplars Training Test Negative
samples | samples | samples
car 500 261 259 500
sofa 248 229 223 500
train 297 261 259 500
aeroplane 306 238 204 500

detector during the specific exemplar training period, which
saves lots of training time and maintains comparable per-
formances. However, ELDA model cannot maintain stable
outputs. For cars, it improves the accuracy but for trains it
reduces the accuracy. By introducing MIL to ELDA mod-
els, these average precisions generated by our model, have
increases of 26.4%, 25.2%, 7.6%, 21.9% respectively. The
result shows that our model steadily increases the average
detection accuracy of positive samples and simultaneously
suppresses the false detection rate of negative samples.
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Fig. 2. The Precision-Recall curves of cars, sofas, trains and
aeroplanes. ESVM, ELDA and our model correspond to the
colors red, green, and blue.

In Fig.2, the red curves represent PR curves of ESVM
in testing samples of cars, sofas, trains and aeroplanes. The



green ones and blue ones correspond ELDA model and our
model respectively. For each category detection windows,
setting a gradually reduced threshold to acquire different pri-
cison and recall rates, which constitute the vertical and hor-
izontal coordinates of points on the Precision-Recall curves.
At the begining, a larger threshold leaves out few detection
windows, most of which are accurate results. So the prici-
sion is close to 1, but the recall is nearly 0. In the end, a
smaller threshold brings numerous detection windows, most
of which are wrong results. So the precision is nearly 0, but
the recall is close to 1. Despite precision and recall have an
inverse relationship, a high precision and a high recall at the
same time are what we are attempting to pursuit. For each
type of objects, the green curve fluctuates up and down near
the red line. Overall, its effect is almost the same as the red
one. On the other hand, the blue curve is basically above the
red line and the blue one, which maintains a relatively slow
downward trend. Thus, it can still maintains good accuracy
at a high recall rate. In addition, because the linear LDA de-
tector from ELDA model and our model leaves out negative
samples mining, the training time that every exemplar con-
sumes is greatly reduced by a few seconds, greatly improving

the training speed.
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Fig. 3. The meta-data transfer performance of our model on
the train and sofa and aeroplane.
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Fig. 4. The meta-data transfer performance of our model on
various cars.

and exemplars, we can transfer the knowledge of exemplars
(e.g., segmentation and geometry structure) directly onto ob-
ject locations, to obtain shapes, directions and other high-
level information. After sorting detected windows from high
scores to low scores, we analysis the top ten detection results.
As it is dipicted in Fig.3 and Fig.4, every detected window is
found and replaced by its corresponding exemplar, which is
discrimatively trained and keeps unique exemplar-based in-
formation. The exemplar and the transferred object maintain
a high degree of consistency. Meanwhile, corresponding ex-
emplars can also be its mete-data, such as geometry structures
and segementations in Fig.3 and Fig.4. Therefore, combining
the experimental result statistics with images, our model in-
deed not only tells us ”what it is” but also reminds us of ” what
it is like”.

5. CONCLUSION

Our ELDA model binding MIL not only leaves out negative
samples mining during the training process, saving training
time largely. Moreover, MIL is introduced to achieve the
higher average accuracy in PASCAL VOC 2007 database than
ESVM and ELDA model, which demonstrates the feasibility
and effectiveness of our model. Meanwhile, the model re-
tains the advantages of exemplar meta-data transfer function,
and makes the object detection process more flexible, fully
expressing the shape, orientation, size and other information
of detected objects.
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