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ABSTRACT

An elapsed facial emotion involves changes of facial contour
due to the motions (such as contraction or stretch) of facial
muscles located at the eyes, nose, lips and etc. Thus, the
important information such as corners of facial contours that
are located in various regions of the face are crucial to the
recognition of facial expressions, and even more apparent for
micro-expressions. In this paper, we propose the first known
notion of employing intrinsic two-dimensional (i2D) local
structures to represent these features for micro-expression
recognition. To retrieve i2D local structures such as phase
and orientation, higher order Riesz transforms are employed
by means of monogenic curvature tensors. Experiments per-
formed on micro-expression datasets show the effectiveness
of i2D local structures in recognizing micro-expressions.

Index Terms— Emotion, micro-expressions, i2D, higher
order Riesz transform

1. INTRODUCTION

Micro-expressions are facial expressions involving only
minute and brief facial motions that last typically from 1/25 to
1/5 of a second [1]. Just like normal facial expressions, micro-
expressions include six universal expressions, namely happy,
sad, fear, surprise, anger and disgust. Micro-expressions are
involuntary and usually reveal the genuine emotion state of a
person [2]. Thus, recognizing micro-expressions is beneficial
as we can interpret and identify the true feeling of someone in
order to avoid conflict, danger or being deceived. However,
experiments conducted by Frank et al. [3] have quantified the
difficulty of recognizing micro-expressions with naked eyes.
His results revealed that the recognition rates for five subtle
expressions were just 32% and 47% for untrained and trained
human experts respectively.

More recently, attention has increasingly been paid to
micro-expressions recognition. However, its performance is
not as good as normal facial expressions recognition; the lat-
ter achieving up to over 90% accuracy. The reasons could be
the following: (1) lack of well established micro-expressions
databases due to difficulty in inducing, capturing and identi-
fying subtle emotions and (2) difficulty in recognizing micro-

expressions due to the short duration and low-intensity facial
motions of elapsed expressions. And yet such capability is
beneficial for diverse application settings where revealing
hidden or suppressed emotions is vital; such is the case for
public safety (e.g. truth concealment or suspicious intent)
and even in the corporate world where the integrity of high-
ranking officials needs to be evaluated.

To our best knowledge, there are only two publicly avail-
able spontaneous micro-expressions databases: CASME II
[4] and SMIC [5]. In [4], the baseline was established on
CASMEII by employing 5×5 block-based Local Binary Pat-
tern - Three Orthogonal Planes (LBP-TOP) [6] and Support
Vector Machine (SVM) for feature extraction and classifica-
tion respectively, with Leave-One-Video-Out cross-validation
(LOVOCV). The same techniques for feature extraction and
classification were adopted by [5] to produce a baseline for
SMIC. In the case of this work, temporal interpolation model
(TIM) was additionally applied as a preprocessing technique
to fix the frame length for each video. There are few other
related works that employ different feature extraction tech-
niques for micro-expressions: optical strain [7, 8] and variants
of LBP-TOP [9, 10].

More recently, monogenic signal theory [11] was pro-
posed to extract the local structures of images for emotion
recognition. In the work of [12], only local magnitude and
local real and imaginary parts of orientation were utilized to
perform normal facial expression recognition. In their later
work [13], they included the local phase, orientation (i.e.,
the real and imaginary parts) and magnitude as features for
in-the-wild emotion recognition. In [14], the same concept
of extracting local signal structures such as amplitude, phase
and orientation as features was first employed for micro-
expression recognition. These previous works utilized the
first order Riesz transform. However, first order Riesz trans-
form can only be used to analyze intrinsic one-dimensional
(i1D) local structures such as lines and edges [15]. Since fa-
cial expressions comprise complex contours such as corners,
intrinsic two-dimensional (i2D) local structures would be a
better and more suitable feature representation. Therefore, in
this paper we propose a new feature representation technique
which adopts i2D local structures from multiple scales, for
the first time in micro-expression recognition. The i2D lo-
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cal structures such as phase and orientation are retrieved by
employing monogenic curvature tensors based on second and
third order Riesz transforms. The i2D phase and orientation
from all scales are then encoded by the proposed encod-
ing schemes, and described by a dynamic texture descriptor,
which forms the final feature vector for SVM classification.
In our experiments, we show that i2D local structures out-
perform i1D local structures in micro-expression recognition.
Concisely, the main contributions of this paper are: (1) the
first known work that employs i2D local structures for micro-
expression recognition; (2) new formulations of encoding
schemes for phase and orientation information; and (3) the
comparison between i1D and i2D local structures as feature
representations for micro-expression recognition.

The paper is organized as follows: Section 2 gives a
brief introduction on higher order Riesz transform, followed
by Section 3 that describes the proposed method in detail.
Section 4 then presents the experimental results and analysis
while our conclusion is drawn in Section 5.

2. HIGHER ORDER RIESZ TRANSFORM

The intrinsic dimension of a signal expresses the number of
degrees of freedom required to describe local structures [11].
An image can be categorized into three possible intrinsic di-
mensionalities: i0D, i1D and i2D; e.g., constant areas are of
i0D, straight lines and edges are of i1D while more complex
patterns such as corners and junctions are of i2D [16].

The monogenic signal which is built on first order Riesz
transform, is an isotropic 2D extension of the traditional 1D
analytic signal. It can analyze i1D local structures such as
straight lines and edges effectively in a rotation invariant man-
ner. In the case of a 2D image, X, the first order Riesz kernel
in the spatial domain is

(Rx(X), Ry(X)) =

(
x

2π|X|3
,

y

2π|X|3

)
,X = (x, y) ∈ R2

(1)
where Rx and Ry represent the Riesz transform operator cor-
responding to x and y directions. After Fourier transform, the
transfer function of the kernel is

(Hu(u), Hv(u)) =
(
i
u

|u|
, i
v

|u|

)
,u = (u, v) ∈ R2 (2)

and the monogenic signal of an image f (X) is defined as the
combination of f (X) and its Riesz transform

fM (X) =

(
f (X),Rx{f }(X),Ry{f }(X)

)
(3)

Concisely, the i1D local phase φ and i1D local orientation θ
can be retrieved by

φi1D = atan2

(√R2
x +R2

y

f

)
, θi1D = atan

(
Ry
Rx

)
(4)

To retrieve i2D local structures such as corners and junctions
on an image, higher order Riesz transform has to be em-
ployed. The Laplacian of Poisson filter (LOP) proposed by
Fleischmann [15] is employed as it can derive the second and
third order filter kernels easily. Higher order filter kernels are
produced by multiplying the Riesz transform with itself and
with the kernel filter according to the convolution theorem in
the frequency domain.

The second order Riesz transform in the spatial domain
has three components:

Rxx = F−1{F{Rx{Rx} ∗ LOP}(u)} (5)

Rxy = F−1{F{Rx{Ry} ∗ LOP}(u)} (6)

Ryy = F−1{F{Ry{Ry} ∗ LOP}(u)} (7)

while the third order Riesz transform in spatial domain has
four components:

Rxxx = F−1{F{Rx{Rx{Rx}} ∗ LOP}(u)} (8)

Rxxy = F−1{F{Rx{Rx{Ry}} ∗ LOP}(u)} (9)

Rxyy = F−1{F{Rx{Ry{Ry}} ∗ LOP}(u)} (10)

Ryyy = F−1{F{Ry{Ry{Ry}} ∗ LOP}(u)} (11)

where the ∗ is the convolution operator.
To retrieve the i2D local structures for the phase and ori-

entation, monogenic curvature tensors are employed. For our
needs, we make use of both the even and odd part of the
monogenic curvature tensor [15], which are defined as

Teven =

[
Rxx Rxy
Rxy Ryy

]
(12)

Todd =

[
Rxxx + e12Rxxy e12Rxxy −Rxyy
e12Rxxy −Rxyy Rxyy + e12Ryyy

]
(13)

where e12 is a bivector basis of Clifford algebra [17]. By
means of Clifford algebra, the odd tensor can be split into
two parts Todd = Toddx + e12Toddy . From Todd and Teven,
the i2D local phase φ and orientation θ can be derived by

φi2D = atan2

(
|det(Todd)|
det(Teven)

)
(14)

θi2D = atan

(
det(Toddx)

det(Toddy)

)
(15)

where det(·) is the determinant of the tensor matrix.

3. PROPOSED METHOD

Our proposed approach is illustrated in Fig. 1, and more de-
tails of each step are given in the following subsections.
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Fig. 1. Flowchart of the proposed algorithm

3.1. Signal Preprocessing

In the real world, a signal e.g. an image, is usually formed
by multiple frequencies. In monogenic representation, local
signal properties of image structures e.g. amplitude, phase
and orientation are extracted from a narrow sub-band of the
whole image spectrum. Thus, a bandpass filter is required to
represent an image with band limited signals. In our work,
we adopt the Laplacian of Poisson (LOP) filter of [15] as the
bandpass filter to construct higher order Riesz transform. For
first order Riesz transform, we employ the standard Poisson
filter as it is not possible to derive the first order Riesz trans-
form from the LOP filter [15]. The transfer functions of the
LOP and Poisson filters in the Fourier domain are as follows:

F{LOP}(u) = −4π2|u2|exp(−2π|u|s),u ∈ R2 (16)

F{P}(u) = exp(−2π|u|s),u ∈ R2 (17)

where ss > 0 is the scale space parameter. In our experiment,
s is set to 4, 8 and 16 to form a multiscale bandpass signal.
The multiscale bandpass signals are then convoluted with the
second and third order Riesz transforms to build the even and
odd monogenic curvature tensors. The i2D phase and orienta-
tion are retrieved from the even and odd monogenic curvature
tensors based on Eqs. (14) and (15) respectively, while the
i1D phase and orientation are computed from Eq. (4).

3.2. Feature Extraction

In this work, we introduce new encoding schemes for both
the i1D and i2D signal structures. Instead of encoding the
input into binary code by comparing the difference using the
unit step function (which was found to be not reasonable for
phase and orientation angles [13]), a simple quantification
formula is used to quantize the phase and orientation into a

number of discrete levels. These quantified phase and orien-
tation are then described by the state-of-the-art dynamic tex-
ture descriptor LBP-TOP to include essential temporal and
appearance information found in sequences [6]. To extract
the local texture pattern, a block-based approach to LBP-TOP
is implemented, where input images are first partitioned into
5× 5 non-overlapping blocks (following e.g. [14]), then his-
tograms are obtained from each block volume and concate-
nated to form the final feature histogram.

3.2.1. Encoding Local Orientation

The i1D and i2D orientation structures are encoded by the
following quantification formula:

j = sign(θ(x, y))mod([
θ(x, y)
π/2
ϑ

], ϑ) (18)

where θ(x, y) denotes the orientations and ϑ denotes the
quantification levels. As the orientation spans from −π

2 to π
2 ,

the sign of the orientation has to be taken into consideration
for quantifying. The correlation between the orientation of
the center pixel and the neighboring pixels is computed as:

Jp =

{
0, jxc,yc = jxp,yp

1, jxc,yc 6= jxp,yp

(19)

where jxc,yc and jxp,yp denote the orientation of the center
point and neighboring point respectively. Finally, the orienta-
tion histogram is computed as follows:

Hθ =

P−1∑
p=0

Jp2
p (20)

3.2.2. Encoding Local Phase

The i1D and i2D phase structures are first encoded by:

p = mod([
φ(x, y)

2π
ϕ

], ϕ) (21)

a quantification function, where φ(x, y) denotes the phase an-
gle, and ϕ is the number of quantification levels. The binary
encoded dominant phase QP can easily obtained by:

Qp =

{
0, qxc,yc = qxp,yp

1, qxc,yc 6= qxp,yp

(22)

where qxc,yc and qxp,yp denote the quantified phase value of
the center point and neighboring point respectively. Finally,
the phase histogram is computed as follows:

Hφ =

P−1∑
p=0

Qp2
p (23)

3.3. Feature Fusion and Classification

The multiple feature representations, Hc, where c = {θ, φ}
across all s scales are fused by direct concatenation. A stan-
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dard multi-class linear-kernel SVM classifier is then used to
perform micro-expression classification of image sequences.

4. EXPERIMENTS

4.1. Database Description and Preprocessing

The proposed algorithm is evaluated on two publicly avail-
able spontaneous micro-expression databases: CASME II [4]
and SMIC [5]. The videos from these databases have been
recorded under constrained lab conditions. CASME II con-
sists of 247 videos elicited from 26 subjects, containing five
micro-expression classes: Happiness (HAP), Disgust (DIS),
Repression (REP), Surprise (SUR), and Others (OTH). The
videos were recorded with a high speed camera with frame
rate of 200 fps and a spatial resolution of 280 × 340 pixels.
SMIC contains 164 micro-expression samples from 16 partic-
ipants. The videos were captured and recorded with 100 fps at
a resolution of 640× 480 pixels. This database contains three
classes of micro-expressions: positive (POS), negative (NEG)
and Surprise (SUR). POS labels are mainly happy expressions
while NEG labels include sad, fear and disgust expressions.
All video frames in these databases have been well-registered,
and the face regions have been properly aligned and cropped.
Due to the different resolution of videos in the database, the
input frames have been resized to the average resolution of
340× 280 pixels.

4.2. Experiment Settings

In the encoding scheme, the quantification levels of local
phase ϕ and local orientation ϑ are set to 16 and 8 respec-
tively, as these are empirically found to perform the best in
the datasets. SVM with linear kernel (c = 10000) is applied
for classification. To avoid over-fitting our data which is of
small sample size, linear kernels are chosen. As the database
comprised multiple subjects, the Leave-One-Subject-Out
cross-validation (LOSOCV) setting is applied in our evalu-
ation, whereby for each of the k folds (for k subjects), the
image sequences of one subject are used as testing samples
while the remaining image sequences are used as training
samples; finally, the average score across k folds is taken.

4.3. Results and Discussions

We present our experimental results in Table 1 for both
CASME II and SMIC databases. The proposed approach
using i2D local structures clearly outperforms the i1D local
structures and the baseline methods of [4, 5] for both datasets.
This strengthens the fact that micro-expressions involve fine
variations of complex facial contours which include corners
and junctions. These patterns are well described by i2D local
structures as compared to gradient-like i1D local structures.
The confusion matrices of our proposed method shown in
Tables 2 and 3 further shed light as to which expressions

are responding well to features encoded by i2D local struc-
tures. Interestingly, not all emotions improved with the use
of I2D features; but specifically, the HAP and OTH (from
CASME II), and POS and SUR (from SMIC) have shown
improvement.

Table 1. The recognition performance based on F1-score
(F1), precision (P) and recall (R) on the CASME II and SMIC

Local CASME II [4] SMIC [5]
Structures F1 P R F1 P R

Baseline 0.35 0.36 0.34 0.43 0.43 0.44
i1D 0.32 0.37 0.28 0.34 0.33 0.36
i2D 0.41 0.46 0.37 0.44 0.44 0.45

Table 2. Confusion matrix for CASMEII by using i2D local
structures

Expression HAP DIS REP SUR OTH

HAP 0.47 0.03 0.06 0.03 0.41
DIS 0.11 0.32 0.00 0.00 0.57
REP 0.30 0.07 0.26 0.00 0.37
SUR 0.40 0.12 0.00 0.16 0.32
OTH 0.13 0.12 0.02 0.06 0.67

Table 3. Confusion matrix for SMIC by using i2D local struc-
tures

Expression NEG POS SUR

NEG 0.33 0.39 0.29
POS 0.37 0.55 0.08
SUR 0.44 0.09 0.47

5. CONCLUSION

We present a novel idea of exploiting i2D local structures
as the features for micro-expressions recognition, in con-
trast to previous works that utilized i1D local structures. In
order to retrieve i2D local structures particularly the phase
and orientation information, we adopt the even and odd parts
of monogenic curvature tensors based on second-order and
third-order Riesz transforms. The i2D local phase and i2D
local orientation from all scales are then encoded by our
proposed encoding schemes and represented by an LBP-
TOP descriptor. Our experiments on two publicly available
spontaneous micro-expression datasets demonstrate the ef-
fectiveness of i2D local structures over i1D local structures
for micro-expression recognition.
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