
SUBSPACE CLUSTERING WITH A LEARNED 

DIMENSIONALITY REDUCTION PROJECTION 
 

Qiang Zhang, Zhenjiang Miao 

 

Beijing Jiaotong University 
 

Abstract 

 

Subspace clustering aims to separate data from a 

union of low dimensional linear subspaces. Many 

recent subspace clustering methods based on self-

representation are popular and achieve state-of-

art performance. Dimensionality reduction is a 

common preprocessing procedure before 

applying these clustering methods. In this paper, 

we present an algorithm to segment subspaces 

with a learned dimensionality reduction 

projection instead of simply using PCA (Principal 

Component Analysis). We propose an objective 

function which simultaneously learns the 

dimensionality reduction projection and self-

representation coefficients. We integrate SMR 
(Smooth Representation subspace clustering) 

into this framework and propose SMR_LP 

(Smooth Representation clustering with Learned 

Projection). We also propose an efficient method 

to optimize the cost function. A well learned 

projection helps preserving the data structure and 

improves the clustering performance. 

Experimental results demonstrate the 

effectiveness of our proposed method. 

 

Index Terms—Motion segmentation, Face 

clustering, Dimensionality reduction, Subspace 

clustering, Spectral clustering 

 

1. INTRODUCTION 

 

High-dimensional data are ubiquitous in many 

practical computer vision and image processing 

applications, e.g. motion segmentation, face 

clustering. Often these high-dimensional vison 

data lie in or near to a union of low-dimensional 

subspaces. Subspace clustering is a technology to 

find this multiple low-dimensional structure and 

partition data into their underlying subspaces. 

Numerous subspace clustering algorithms have 

been suggested in the literature．They can be 

divided into four categories: iterative methods 

(K-subspaces [4], K-flats [5]), algebraic methods 

[8-11], statistical methods (MPPCA [6], MSL [7]), 

and spectral clustering based methods [3, 12-18], 

as summarized in [13] [17]. 

  Recent works based on spectral clustering have 

attracted more eyes and achieve excellent 

performance. They construct the affinity matrix 

based on local or global information around each 

data and spectral clustering is applied on the 

affinity matrix to segment the data into 

appropriate number of groups. In particular, self-

representation based methods (SSC [12, 13], 

LRR [3, 14, 15, 16], LSR [17], SMR [18]) try to 

write each data point as a linear of affine 

combination of other data points (In this paper, 

we refer to it as self-representation coding) and 

construct the affinity matrix based on the self-

representation matrix. A self-representation 

matrix C  is obtained by solving 

  - +
C

min X XC f C        (1), 

where X is the collection of data with each 

column being a signal,    is a proper norm 

measuring the self-reconstruction error.  f C is 

the regularization term which is the essential 

difference between these self-representation 

methods.   is a positive constant that control 

the tradeoff between reconstruction error and 

regularization. They utilize C to construct an 

affinity matrix ( ) / 2C C . The final segmenting 

result is produced by Spectral Clustering. Ideally，

the affinity matrix should be block diagonal. To 

enforce that the problem receives a block 

diagonal solution, they adopt different 

regularization terms  f C . SSC(Sparse 

Subspace Clustering)[12,13] use
1

C , -1l norm 

of C , (a surrogate of -0l norm
0

C ) to pursue a 

sparse self-representation. [3,14,15,16] use
*

C , 

nuclear norm of C  (a surrogate of ( )Rank C ) to 

pursue a low rank representation. LSR(Least 

Square Regression) [17] theoretically shows 

when Enforced Block Diagonal Conditions are 

satisfied, we are able to get a block diagonal 

solution. They propose LSR using
2

F
C , 

Frobenius norm of C . Further [18] indicates 

that grouping effect leads to a well affinity graph 

which is helpful for spectral clustering. Guided by 

Enforce Grouping Effect Conditions, they 

propose smooth representation subspace 

clustering[18] (SMR) method which results in 

competitive state-of-art performance in many 

subspace clustering tasks. 

As the dimension of vision data is often very 
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high, dimensionality reduction method is 

generally applied on the data for reducing data 

storage costs and computation complexity. Most 

of earlier works focus on the self-representation 

coding and neglect the importance of a proper 

projection for dimensionality reduction. They just 

simply use PCA which is not designed for 

subspace clustering. Few works study 

dimensionality reduction for subspace clustering: 

[19] present Latent Space Sparse Subspace 

Clustering (LS3C), which learns a projection for 

SSC and improves the performance of SSC. 

Inspired by their idea, we study the 

dimensionality reduction for general self-

representation based methods. 

Considering the task of segmenting subspaces, 

the multiple subspaces structure should be best 

preserved while projecting origin data into low-

dimensional subspace. In this paper, we present a 

unified framework for simultaneous 

dimensionality reduction and self-representation 

coding that the projection matrix and the self-

representation matrix are iteratively learned. 

Further we integrate SMR[18] into this 

framework and propose a new subspace 

clustering algorithm called SMR_LP (short for 

Smooth Representation clustering with Learned 

Projection), which simultaneously learns the 

projection and finds smooth self-representation 

coefficients in the projected low-dimensional 

space. 

Paper contributions are as follows:  

A unified framework for simultaneous 

dimensionality reduction and self-representation 

coding is proposed. Jointly learning the 

projection and self-representation matrix ensure 

that the projection can preserve the multiple 

subspaces structure, meantime a well learned 

projection helps finding a more accurate self-

representation matrix for subspace clustering ; 

We introduce an iterative procedure for 

optimizing the proposed objective function. It 

should be noted here, although we have similar 

idea with LS3C [19], the proposed method is 

more simple and efficient than LS3C in the step 

of optimization of transformation matrix. 

Moreover, as the sparse coding step of LS3C is 

much computational demanding than smooth 

representation coding, our proposed method is 

much faster than LS3C [19]. 

 

2．BACKGROUND 

 

In this section, we first overview some basic 

definition of self-representation based subspace 

clustering. 

Le    1 2 1 2, , , , , , D n

k nX X X X x x x       

be a set of data vectors from a union of k  

subspaces  
1

k

i i
S


 , Let 

iX  be a collection of 

data lying in subspace
iS , and 1

k

ii
n n


 . The 

task of subspace clustering is to segment the data 

into appropriate number of groups according to 

their underlying subspaces [13] [17].  

For spectral clustering based methods, the 

main challenge is find a good affinity matrix C , 

with each entry ijC measuring the affinity between 

data ix  and jx . An idle affinity matrix should be 

block-diagonal, with affinities of data points from 

different subspaces being zeros. Self-

representation based methods solve problem (1) 

to pursue the idle affinity matrix.  

SMR (Smooth Representation subspace 

clustering method) is proposed in [18], which 

meets Enforce Grouping Effect Conditions and 

results in competitive state-of-art performance. 

SMR solves the minimum problem blow to find a 

self-representation matrix C . 

 
2

min - T

FC
X XC tr CLC        (2)                          

Original Data 

Dimensionality Reduction 

(PCA) 

Self-representation Coding 

Spectral Clustering 

 Figure 1. Flowchart of traditional subspace clustering method (Left) and our proposed method 

(Right). The main difference is that in our proposed method the dimensionality reduction projection 

is learned along with self-representation coding instead of using a fixed projection from PCA. 

Original Data 

Dimensionality Reduction 

Projection Learning 
Self-representation 

Coding 

Spectral Clustering 
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, where L is the Laplacian matrix [18]. 

Next, we study dimensionality reduction, the 

common preprocessing procedure on data points 

before applying self-representation coding. Let 
D dP  be a linear projection matrix that maps 

the data from
D

to d , with d D . Let 

,  T d nY P X Y   be the projected data. Then 

the self-representation matrix is found by solving  

  - +
C

min Y YC f C     (3). 

As the self-representation coding is done on the 

mapped low dimensional data Y , the computation 

is more efficient than on the original high 

dimensional data X . Previous works simply use 

PCA to build P which is not designed for 

subspace clustering. Next we will introduce our 

method which clusters subspaces with a learned 

dimensionality reduction projection.   

 

3. SELF-REPRESENTATION BASED 

SUBSPACE CLUSTERING WITH A 

LEARNED PROJECTION 

 

Here we propose an algorithm that the 

dimensionality reduction projection P is learned 

along with self-representation coding rather than 

using a fixed one as in traditional works. The self-

representation matrix C and the projection are 

simultaneously learned by solving minimization 

problem as follows: 
* *

,

[ ] arg min ( , )
P C

P C J P C，       (4) 

2

1

2

2

( , ) -

            ( )

. .

-  

T T

F

T

F

T

J P C P X P XC

f C X PP X

P P Is t





 



 



 

, where the first two terms promote a block-

diagonal self-representation. The third term is a 

PCA-like regularization, which ensures that the 

projection retains original information. 
1 and

2  

are positive parameters controlling smooth 

representation and regularization.  To avoid 

degenerate solution, we impose a constraint:
TP P I , where I is a d d   identity matrix. 

 

3.1. Optimization 

Problem (4) involves two variables P and C , 

alternating optimization techniques [20] are 

adopted to solve this problem by iterative 

optimization of P and C .We refer the two steps 

as Projection learning and Self-representation 

coding respectively. 

3.2. Projection learning 

In this step, we optimize over P with a fixed C . 

The second term can be removed and we can 

obtain P by solving the following problem: 
2 2

1 2min   - -

. .      

T T T

F FP

T

P X P XC X PP X

s t P P I

 



  (5) 

Then we expand the cost function to 

1

2

( ( )( ) )

( 2 )

T T

T T T T T T

tr X XC X XC PP

tr X PP PP X X PP X X X





 

  

Using the equality constraint TP P I

and the fact that ( )Ttr X X is constant, we 

achieve 

1

2

( ( )( ) )

( )

T T

T T

tr X XC X XC PP

tr X PP X





 


 

Using the property of matrix trace, the problem 

further becomes 

1 2( ( ( )( ) ) )T T Ttr P X XC X XC XX P    . 

Then Problem (4) is equivalent to the 

optimization problem below, 

min   ( )

. . 

T

T

tr P MP

s t P P I
            (6) 

, where
1 2( - )( - ) -T TM X XC X XC XX  , 

Problem (6) is a minimum eigenvalue problem, 

the optimal solution is the d  eigenvectors 

corresponding to the smallest d  eigenvalues of

M . 

 

3.3. Self-representation coding 

 

Based on existing P , we can obtain C by solving 

the following problem: 
2

1min  - ( )
FC

Y YC f C        (7) 

Where TY P X . It is the same as problem (1), 

expect that the self-representation coding is done 

on matrix Y rather than on the data matrix X . It 

is solved by the same way as traditional self-

representation method. Algorithm 1 summarized 

the procedure of self-representation coding along 

with the projection matrix learning. 

Here we integrate SMR [18] method into this 

framework to jointly learn the smooth 

representation matrix and the projection. We call 

this method SMR_LP, in which we substitute (8) 

for (7). 

 
2

1min - T

FC
Y YC tr CLC       (8) 

Same to most self-representation Clustering 

methods, once the smooth representation 

coefficient matrix C is found, the pairwise 

affinity matrix is constructed as T( C + C )/2W  , 

then the segmentation of the projected data is 

obtained by applying spectral clustering.  
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4. EXPERIMENTS 

In this section, we apply our proposed method on 

two typical subspace clustering tasks: motion 

segmentation and face clustering. Several self-

representation based subspace clustering 

algorithms such as Least square Regression (LSR) 

[17], Low-Rank Representation (LRR) [3], SSC 

[13], Smooth Representation Clustering 

(SMR)[18] and Latent Space Sparse Subspace 

Clustering (LS3C) [19] are compared. For all the 

algorithms, we use Frobenius norm for the self-

reconstruction error term for fair comparison. The 

parameter settings of our method on the two tasks 

are given in corresponding sections below. 

  

4.1 Motion Segmentation 

 

We evaluate our method for motion segmentation 

task on the Hopkins155 motion segmentation 

database [1], which contains 155 video sequences. 

For each sequence, a number of point trajectories 

are extracted using standard tracking methods. 

The task of motion segmentation is to cluster 

these point trajectories in accordance with 

different motions in the video sequences. For 

methods other than LS3C and our proposed 

SMR_LP, the data is project into a subspace of 

dimension 12 using PCA as described in their 

articles. We choose maximum iteration number 

t = 10 and
1 2= =20000  .Table 1 reports 

clustering errors of different methods. As can be 

seen, our method SMR_LP significantly 

improves the performance of origin SMR and 

achieves the best results.  

 

Table 1. Clustering errors on the Hopkins155  

Algorithm Median (%) Mean (%) 

SSC 0 2.41 

LRR 0 3.74 

LSR 0.28 2.30 

SMR 0.21 2.34 

LS3C 0 2.31 

SMR_LP 0 1.87 

 

4.2 Face Clustering 

 

We use Extended Yale Face B [2] datasets to test 

our algorithm for face clustering task. It contains 

38 classes of 64 face images under varying 

illuminations. We use data of the first 10 classes, 

and resize them to 32×32. Similarly, the data is 

project into a subspace of dimension 10×6 using 

PCA for methods other than LS3C and our 

proposed SMR_LP. We choose maximum 

iteration number t = 10 and
1 =

2 = 20. Table 2 

presents the clustering errors of different methods 

on Extended Yale Face B datasets. As can be seen, 

our SMR_LP also outperforms the others. 

 

Table 2. Clustering errors on Extended Yale B  

Algorithm Clustering error (%) 

SSC 48.81 

LRR 35.00 

LSR 27.50 

SMR 26.56 

LS3C 41.35 

SMR-LP 24.73 

 

6. Conclusions 

 

In this paper, we propose a framework for 

simultaneous dimensionality reduction and self-

representation coding and introduce a new 

algorithm SMR_LP. Experiments on benchmark 

datasets demonstrate the effectiveness of our 

method. Our method can also be seen a new 

dimensionality reduction method for data lying in 

multiple subspaces. In the future, we plan to study 

it in a wider scope, e.g., feature extraction and 

face recognition. 
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Algorithm 1: Self-representation coding with a 

learned dimensionality reduction projection  

Input: Data
D nX R  ,

1 ,
2  

Initialization: 

Set P to be the d eigenvectors corresponding 

to the top d eigenvalues of
TXX . 

Repeat 

Step 1: Self-representation coding 

-Compute
TY P X . 

-Solve the self-representation problem (7) to 

obtain C . 

Step 2: Projection learning 

-Set 
1 2( - )( - ) -T TM X XC X XC XX   

-Set P to be the d eigenvectors corresponding 

to the bottom d eigenvalues of M . 

Until stopping conditions reached. 

Output: P and C . 
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