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ABSTRACT

A variety saliency detection methods have been based on
the background prior knowledge. Nevertheless, some im-
age patches connected to the image boundary are foreground
noise. In this paper, we propose a saliency detection al-
gorithm which propagates coarse saliency based on robust
background prior set via random walks. First, we get the
robust background prior set from the initial background set
which is made up by all image patches connected to the im-
age boundary, and compute a coarse saliency map through
summation of global contrast between image patch in com-
plement set of robust background prior set and image patch in
robust background set. Second, we get foreground prior set
by segmenting the coarse saliency via adaptive threshold, and
propagate foreground prior set via random walks. Propagated
foreground prior set is integrated by Bayesian inference mod-
el and resulting a saliency map. Third, we update saliency
map by hypergraph and integrate current saliency and updat-
ed saliency by weighted mean summation. Finally, results
from multi-scale saliency maps are integrated by pixel-wise
weighted summation. Experimental result shows that our
approach outperforms state-of-art approaches on two public
available dataset.

Index Terms— saliency detection, superpixels, robust
background, random walks, Bayesian inference model,

1. INTRODUCTION

Saliency detection in an image is an useful technology which
uses low-level feature to estimate the position, size and shape
of object. Generic feature , distinct color, different texture
and diverse shape etc, extracted from the region of salien-
t object always originates from contrast to its neighbor region
and background part. Saliency detection models intrinsically
salient stimuli to estimate probability of the region of image is
categorized as part of foreground. The primarily human atten-
tion can automatically judge the importance of different part
of image, and conduct following processes on the salient part
which is most importance in image. The saliency detection

in image is significant importance to reduce the computation
cost as a preprocess in the tasks of computer vision.

Since Itti et al. [1] introducing a computational mod-
el for visual attention based on integrated biological fea-
ture,saliency detection have had a rapidly increasing progress.
In [2], Achanta et al. propose a conceptually simple approach
by combining images band-pass filter responses from three
CIEL∗a∗b∗ channels to model the saliency detection algo-
rithm. In [3], Cheng et al. present an algorithm to exploit
the pixel-wise saliency based on the contrast of color his-
togram (HC). Nevertheless, implementation of HC does not
take the spatial information into consideration, the imple-
mentation of region contrast (RC) uses the spatial difference
by the center point distance of image region to optimize the
result of HC. Due to absence of high level feature and prior
knowledge, previous saliency detection is difficult to deal
with wide variation image. There are two means to model
prior knowledge. First,the prior knowledge is based on fore-
ground. In [4], Xie et al. model foreground prior by color
boosting Harris corner detection [5], saliency map is integrat-
ed by Bayesian inference model.In [6],Liu et al. propose a
saliency diffusion method by adaptive partial differential e-
quation, the foreground prior is get by the Harris convex hull
proposed by [4].Second, some saliency detection are based
on the background prior. In [7], Wei et al. prove that image
patch connected to the image boundary has a higher proba-
bility to be categorized as background. Furthermore, Wei et
al. optimize the background prior knowledge by the property
of boundary connectivity, an image patch is viewed as back-
ground only when the region is heavily connected to image
boundary, in [8]. In [9], image patches connected to image
boundary are used as a query vector to rank the probability of
all image patches by manifold ranking. Based on absorbing
Markov chain, the work of [10] models the saliency detection
as excepted number of times transferring from transient state,
superpixel disconnect to image boundary, to absorbing state,
superpixel connected to image boundary.

In this paper, we propose a novel method to propagate
saliency. All image patches connected to image boundary are
collected as an initial set of background. Local contrast of

1821978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



the image patch in the initial background set is computed and
grouped by the adaptive threshold [11]. B, robust background
prior set, is made up by the image patch whose contrast val-
ue is less than the adaptive threshold. Image patch in com-
plement set of robust background prior set is defined as U .
We compute coarse saliency map via summing graph shortest
path from image patch in U to image patch in robust back-
ground prior set B. To segment the coarse saliency map,we
get an adaptive threshold [11] based on coarse saliency map.
The image patch in U whose global contrast greater than the
adaptive threshold [11] is used to set up foreground prior set.
Random walks is used to propagate the foreground prior set
and integrated the propagated saliency by Bayesian inference
model. Then, we integrate current saliency map and updated
saliency map by weighted mean summation. The final salien-
cy map results from multi scale saliency integration by pixel-
wise weighted summation.

2. OUR PROPOSED ALGORITHM

2.1. Robust Background Prior Set And Foreground Prior
Set Estimation

In each scale of image segmentation, input image is segment-
ed into Ni superpixels. An example of segmented result is
shown in Fig. 1(b). There are some foreground noise touched
to image boundary, as shown in Fig. 1(c). Using such a prob-
lematic background set lead negative effect to the following
computation.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. (a) input image, (b) superpixel image with compact-
ness is 20 and initial number of superpixel region is 250, (c)
robust background prior set, (d) result of section 2.2, (e) result
of section 2.3, (f) final result, (g) ground truth

We propose an effective method to remove foreground
noise which touches to image boundary. We collect all super-
pixels connected to image boundary as an initial background
set. Foreground noise tends to have distinctive contrast in the
initial background set. As the contrast is based on adjacency
relationship, we compute the contrast via local contrast.

bi =

nei∑
j

d(ci, cj)

1 + α ∗ d(si, sj)
(1)

i is the superpixel belongs to the initial background set. nei
is an adjacent superpixel set consisted by neighbour vertices

of superpixel vi. At the same time, all element in nei is re-
quired to connect to image boundary. d(ci, cj) is Euclidean
distance of mean CIEL∗a∗b∗ color channel between super-
pixel i and superpixel j. d(si, sj) is Euclidean distance of
spatial between center point of superpixel. α is used to ad-
just the importance between color contrast and spatial con-
trast. We remove superpixel whose local contrast is greater
than adaptive threshold [11] from initial background set. The
remain element in the initial background set are used to make
up robust background prior set B. The result in Fig. 1(c)
indicates that our method remove the foreground noise effec-
tively.

Based on the set B, we build up a coarse saliency map via
the global contrast. The salient region have an obvious differ-
ence compared with background. Nevertheless, summation
of color contrast between different region lead to the cumula-
tive error and can not encode the influence of the spatial.As
all superpixels is segmented into two classes: robust back-
ground prior set, B, and the complement set, U . To encode
color contrast and spatial information, we use graph shortest
path to compute a coarse saliency map.

Gs = minp1,p2,...,pn

∑ d(cpi , cpi+1)

1 + α ∗ d(spi , spi+1)
(2)

pi is adjacent to pi+1. Gs is a matrix consist of graph shortest
path to each vertices of the graph. The coarse saliency map is
computed with following criteria: 1 the superpixel in robust
background prior set is set zero, 2 the non-background super-
pixel is computed by summing the graph shortest path from
the vertices in U to B.

Si =

{
0 vi ∈ B∑

vj∈B Gsi,j vi /∈ B (3)

We use adaptive threshold[11] to segment the non-zero value
in coarse saliency map. The non-zero saliency value greater
than threshold is marked as element of foreground prior set
F .The vertices vi in foreground prior set is assigned a val-
ue to measure the probability of vi to be classified as a fore-
ground.To get the probability of vertices in foreground prior
set belongs to foreground, the saliency map of foreground pri-
or set is normalized into [0, 1] as a prior probability set Fp,
element fpi in Fp is used to measure the probability of vi be-
longs to foreground set.

2.2. Coarse Saliency Map Propagated By Random walks

In [12], random walks is used to category the data under the
condition of having initial labels. To propagate the coarse
saliency map, we use robust background prior set B and fore-
ground prior set F as initial condition to group the unmark
data. To avoid negative propagation of the foreground pri-
or, all vertices in the robust background prior set is labeled
as a class to classify the unmark data, but we select only an
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element in foreground prior set as label in each iteration of
classifying the unmark data.

Sri = −L−1U ∗B
T ∗
[
Xi XBa

]
(4)

i is an vertices vi in the foreground prior set F .Ba is all ver-
tices in the robust background prior set. LU is part Lapla-
cian matrix of unmark data. Weight of edge in Laplacian
matrix,wsi,j ,is defined by gaussian weighting function.

wsi,j = e−
‖ci,cj‖

2

σ2 (5)

where ci and cj are the feature of the two vertices vi and
vj .σ is a parameter controls smoothness of gaussian weight-
ing function.

Sri is condition probability of vi is foreground. In
Bayesian inference model, the posterior probability is com-
puted by:

p(i|sal) = p(sali|i) ∗ p(i)∑np
k p(salk|k) ∗ p(k)

=
p(sali|i) ∗ p(i)

p(sal)
(6)

p(i|sal) is posterior probability of vertices vi under the con-
dition of saliency map. p(i) is the prior probability that ver-
tices vi is classified to be foreground part. p(sal|i) is the like-
lihood of observation that under the condition vertices vi is
foreground. np is the number of potential foreground.

The saliency map propagated by random walks is inte-
grated via Bayesian inference model. Sri is viewed as obser-
vation probability of the Bayesian inference model, and the
prior probability is the foreground prior fpi . The probability
of saliency map can be computed by:

Sb =
∑

fpi ∗ Sri (7)

The result in Fig. 1(e). shows that our model based on ran-
dom walks.

2.3. Saliency Updated By Weighted Mean

Random walks not only propagates the foreground but also
the background noise in foreground prior set. To smooth
the propagated background noise, we use normalized cut to
update the propagated saliency map. Propagated saliency
map is viewed as an eigenvector of the Laplacian matrix and
the result of partition is the final saliency in each scale. In
[13],Zhou et al. solve normalized cut by hypergraph theory.
We use hypergraph theory to update saliency.

Su = (I − 0.5 ∗D− 1
2 ∗W ∗D− 1

2 ) ∗ Sb (8)

I is an identity matrix. D is the degrees matrix of super-
pixels graph G = (V,E).W is weight matrix of graph G =
(V,E).Based on the property of laplacian matrix, the proce-
dure of updating does not store current state and last state.
In [14], the current saliency is stored by a coherence matrix.

The coherence matrix is a diagonal matrix with diagonal el-
ement is determined by local difference. Nevertheless, the
saliency propagated by random walks is determined by local
difference. To decline the effect of local difference and store
current state, we take the current state into consideration vi-
a identity matrix rather than coherence matrix. The identity
matrix is not influenced by neighbour nodes and can store cur-
rent state effectively. The equation of update can be defined
by:

St+1 = δ ∗ I ∗ St + (1− δ)Ut (9)

δ balances the importance between current stat and the state
updated by normalized cut. In our experiment, we set δ = 0.9
to adjust current state and updated state. Compared the result
of Fig. 1(d) and Fig. 1(e), the weighted mean summation
prohibits the background noise in foreground set effectively.

2.4. Integrate Multi Scale Saliency

To handle the difference of scale, we integrate final saliency
map for each pixel via weighted summation.

Sf =

∑N
n Wn ∗ Sn∑N

n Wn

(10)

Wn =
1

‖ pixnc − pixnm ‖2
(11)

where N define the number of different scale. In our im-
plement N = 3. Sn is the saliency map result from the
weighted mean propagation at n-th scale. pixnc denotes the
CIEL∗a∗b∗ channel of each pixel in the superpixel region
and pixnm is the average CIEL∗a∗b∗ channel within the su-
perpixel region.

3. EXPERIMENTAL RESULT

We exhaustively compare our approach with other state-of-
the-art saliency detection methods on two public available
dataset:ASD [2] and THUS [3]. For experimental compari-
son, we segment the input image into three scale with com-
pactness 15, 20, 25 and initial number of superpixel 150,
250,350. The smoothing parameter σ used to conduct the
gaussian weight value of random walks is assigned 25, the
σ of normalized cut is 10. α = 3 to balance the importance
of color contrast and spatial difference.Experimental result-
s show that our method have a robust precision than other
methods.

In Fig. 2, we provide some visual comparison of differ-
ent saliency outputs result with previous saliency detection
based on propagation: BMS[15], AMC[10], MR[9], HS[16],
RRWR[17]. Our method not only removes foreground noise
from image boundary set but also prohibits foreground error
propagation from coarse saliency map rather than the other
saliency detection methods.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2. the visual comparison with state-of-art saliency detec-
tion algorithm. (a) Input image, (b) BMS[15], (c) AMC[10],
(d) MR[9], (e) HS[16], (f) RRWR[17], (g) our, (h) ground
truth.
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Fig. 3. precision-recall of (a)ASD and (b)THUS

We compare our model with eleven state-of-the-art salien-
cy detection algorithms: LR[18], SF[19], BMS[15], AMC[10],
MR[9], HS[16], DSR[20], HDCT[21], MS[22], BL[23],
RRWR[17]. To save space, we only compare with top-
performance methods for saliency detection in recent study.
The result shows that our method outperforms the methods in
precision recall curves, F-Measure and mean absolute error.

Similar to [2], we use a threshold Tf ranged in [0, 255]
to segment saliency map. Subsequently, we use the binary to
calculate precision and recall. When precision-recall pairs of
all test images in data set are obtained, we generate an average
precision recall pair. The P-R curves is shown in Fig. 3.

The saliency maps can be segmented by image dependent
threshold proposed by [2]. Based on the threshold, we ob-
tain a precision, recall and F-measure as in [2]. Averaged
F-measure achieved by each saliency detection algorithm is
listed in Fig. 4.

The P-R curves have a limitation that they only consider
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Fig. 4. precision, recall and F-measure of (a)ASD and
(b)THUS
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Fig. 5. mean absolute error of (a)ASD and (b)THUS

whether the saliency region is higher than the background.The
mean absolute error [8] is computed by average per-pixel d-
ifference between the binary ground truth and the saliency
map. It is measured directly how closely the saliency map to
ground truth.The result is shown in Fig. 5.

4. CONCLUSION

In this paper, we implement saliency detection method by
propagated the coarse saliency via random walks. The salien-
cy object has distinctive contrast to the background is used
to remove the salient noise from the initial background set.
The remained element of init background set is used to set-
up a robust background set. We use random walks to propa-
gate the coarse foreground set based on the robust background
set rather than the single-propagation in AMC[10], MR[9],
RRWR[17]. At the same time, the prior foreground set can be
viewed as prior probability to conduct a Bayesian inference
model. Finally, the saliency map is smoothed by weighted
mean summation.
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