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ABSTRACT

We present a new image co-segmentation framework to si-
multaneously segment multiple images by formulating the co-
segmentation problem as a multiple graph clustering problem.
For each image, we first construct a corresponding segment
graph by extracting superpixels as vertices and assigning edge
weights between superpixels according to their feature and
spatial proximity. To integrate the related information across
images, we further compose a similarity graph across all con-
structed segment graphs, in which edges capture the similar-
ity among superpixels across images. We propose to solve the
co-segmentation problem by applying an alternating random
walk strategy on both the segment graphs and the similarity
graph to borrow strengths across images for better segmenta-
tion. The common objects shared in images can be identified
by finding low conductance sets based on the transition prob-
ability matrix of the alternating random walk on these graphs.
Experiments on iCoseg and a sequence of echocardiac im-
ages demonstrate that our novel formulation yields promising
results and performs better than image segmentation on indi-
vidual images separately.

Index Terms— Image co-segmentation; Multiple graph
clustering; Alternating random walk on graphs

1. INTRODUCTION

Image and video segmentation helps extract useful informa-
tion in many commercial and biomedical applications but it
has been a long-standing problem for the accuracy and au-
tomaticity [1–3]. In this paper, we explore the idea of si-
multaneously analyzing multiple images that share common
objects of interest for better image segmentation. Several
methods have been recently proposed to study this image co-
segmentation problem [4–7]. Typically, co-segmentation has
been formulated to identify whether a pixel belongs to the
shared common objects without any “external” information
about the images or the objects as a way to compensate the
lack of supervisory data and the absence of the prior knowl-
edge on the appearance of either images or objects of interest.
To the best of our knowledge, the existing methods all pose
the problem as a clustering problem in derived feature space
for image pixels. For example, a cost function was formulated
in [7] for image co-segmentation by considering the common
patterns of salient objects in images as well as the consis-
tency of the objects across images to suppress the potential
influence from the presence of images with different objects.
In [6], a labeling formulation has been proposed to maximize

the scoring function in terms of a pairwise similarity learned
from a random forest approach. A feature discriminative clus-
tering model has been studied together with a graph partition
formulation in [4] to solve image co-segmentation.

Different from the existing formulations, we solve the
image co-segmentation by first constructing a multi-partite
graph to integrate all the information within and across
multiple images and pose the problem as a multiple graph
clustering problem. Joint clustering of multiple graphs or
networks has been recently investigated in analyzing bio-
logical networks to identify cellular functional modules for
better understanding of living systems. For example, in [8],
we have proposed a joint clustering framework with a novel
random walk strategy to simultaneously cluster two protein-
protein interaction networks. With graphical representations
derived from multiple images, image co-segmentation can
be naturally converted to a joint multiple network clustering
problem by intuitively considering each image as an analog
of a biological network. We solve this multiple network clus-
tering problem by extending the approach in [8], originally
proposed for clustering a pair of networks.

The rest of the paper is organized as follows: In Section 2,
we first introduce the way to construct segment graphs and
a similarity graph as an integrated multi-partite graph for a
given set of images. With the derived graphical representa-
tion, we solve the co-segmentation problem by searching for
low conductance sets of vertices as desired clusters [8–10]
according to the underlying Markov chain of an alternating
random walk on the segment graphs and similarity graph.
In Section 3, we test our method on the iCoseg benchmark
dataset [11] and a sequence of echocardiac images. Com-
pared with image segmentation based on individual images
and a feature-based clustering algorithm, our preliminary ex-
perimental results show that our method achieves higher seg-
mentation accuracy by integrating information across images.
It is promising, considering both segmentation performance
and time complexity, to formulate the image co-segmentation
problem as a joint multiple network clustering problem.

2. METHODOLOGY

In this section, we formulate the image co-segmentation prob-
lem as a multiple network clustering problem. In Section 2.1,
we first introduce how to construct the segment graphs by
extracting superpixels in multiple images. Then, we present
the way to compose the similarity graph with edges revealing
the relationships among superpixels across different images in
Section 2.2. Finally, in Section 2.3, we derive an alternating
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Fig. 1. The first column shows two given images in which a cheetah is the common object of interest. The second column dis-
plays the derived superpixels based on image characteristics. The third column provides a schematic illustration of the segment
graphs and similarity graph constructed from the derived superpixels across two images. The segment graphs have superpixels
represented by red vertices with orange edges capturing the feature and spatial proximity. The similarity graph reflects the
superpixel similarity across images represented by blue dash edges. The fourth column illustrates our alternating random walk
strategy. The green dash arrows and black dash arrows denote two possible one step walk scheme for our alternating random
walk at the yellow vertex. The last column visualizes the results obtained by our graph-based co-segmentation method.

random walk strategy on both segment graphs and similarity
graph to solve image co-segmentation.

2.1. Segment Graph Construction
Given a set of images I = {I1, I2, ..., In} sharing similar ob-
jects, we first over-segment each image Im into km superpix-
els Sm =

{
s1
m, s

2
m, ..., s

km
m

}
, where km may vary for differ-

ent images. In the current work, we adopt the VLFeat tool-
box [12] for extracting superpixels as similarly done in [4,5].
We note that the quality of the derived superpixels may af-
fect the final segmentation results but it is outside the scope
of this paper. With extracted superpixels from each image
Im, we construct a weighted “segment graph” Gm, in which
each vertex corresponds to a superpixel. For an arbitrary pair
of superpixels, we assign an edge weight based on their spa-
tial and appearance proximity. Intuitively, similar superpixels
should have larger weights. With a non-negative adjacency
matrix Wm denoting the similarity between superpixels, we
compute each edge weight

W ij
m = exp(−λ

∥∥xim − xjm∥∥− µ∥∥dim − djm∥∥), (1)

where xim and xjm are the feature descriptors for the super-
pixels sim and sjm and dim and djm are the coordinates of the
gravity center for superpixels sim and sjm in the image space.
In this paper, xim denotes the feature descriptor obtained by
computing the color histogram as discussed in [13]. For dim,
we simply compute

dim =
1

Nsim

∑
l∈sim

c(l), (2)

where Nsim
indicates the total number of pixels within the

superpixel sim and c(l) denotes the image coordinates for the
pixel l.

With the adjacency matrix Wm for each given image, we
further construct the block adjacency matrix W for an overall
segment graph Gw of all n images in I by padding each Wm

on the corresponding diagonal block of W as follows:

W =


W1 0 0 0
0 W2 0 0
0 0 ... 0
0 0 0 Wn


M×M

, (3)

where M =
∑

m=1,...,n km denoting the total number of su-
perpixels across all images. The construction procedure is
schematically illustrated in the third column of Fig. 1.

2.2. Similarity Graph Construction
In order to establish the relationships of superpixels in dif-
ferent images for information integration, we further derive
a similarity graph Gh based on the superpixel appearance
proximity across images. As we mentioned in Section 2.1,
for each superpixel sim, we can compute its feature descrip-
tor xim. Hence, the similarity between images Ip and Iq can
be similarly computed by the similarity matrix Hpq with each
matrix element Hij

pq estimated as follows:

Hij
pq = φ(xip)× φ(xjq) = κ(xip, x

j
q). (4)

In this paper, for simplicity, we use a linear kernel which is the
inner product for two feature descriptors. Finally, the overall
adjacency matrix of the similarity graph of Gh across all im-
ages can be written as:

H =


0 H12 ... H1n

HT
12 0 ... H2n

... ... 0 ...
HT

1n HT
2n ... 0


M×M

, (5)

where H is an symmetric matrix. We note that the segment
graph Gw and the similarity graph Gh share the same vertex
sets but with different types of edges. This graphical repre-
sentation is a generalization of the multi-partite graph, which
motivates us to develop the following random walk strategy
to solve the joint graph clustering problem. The third column
in Fig. 1 also illustrates the constructed similarity graph.
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2.3. An Alternating Random Walk on Graphs

To make use of the information carrying in both the segment
graph Gw and the similarity graph Gh, we propose to use
the alternating random walk strategy [8], in which we require
that the random walker walks on two different types of edges
in Gw and Gh in an alternating manner. The transition matrix
of the underlying Markov chair for our random walk strategy
can be computed as follows:

P =
1

2
PwPh +

1

2
PhPw (6)

where Pw and Ph are the corresponding transition probability
matrices for the random walk on Gw and Gh, respectively.
Pw and Ph can be computed by

Pw = WD−1
w and Ph = HD−1

h , (7)

where Dw and Dh are diagonal matrices with the summation
of edge weights for each vertex on the corresponding diagonal
entry.

The fourth column in Fig. 1 illustrates our alternating ran-
dom walk strategy. The random walker at the yellow vertex in
the fourth column of Fig. 1 can either first walk on the edges
in Gw (orange edges) then Gh (blue dash edges) or first walk
on edges in Gh (blue dash edges) then Gw (orange edges).
These two random walk strategies can be adopted with the
equal probability and hence we obtain the corresponding tran-
sition probability matrix for the alternating random walk (6).

Based on this formulation, we can solve joint graph clus-
tering by searching for k low conductance sets according
to the transition matrix P to identify corresponding k co-
segmentations for the given image set [8–10]. Following the
derivation in [8,9], searching for k low conductance sets by P
can be found by solving the following optimization problem:

max trace
(

Y T P̄Y
Y TDP̄Y

)
s.t. Y 1k = 1N , yij ∈ {0, 1} ,

(8)

where Y is the assignment matrix to assign each superpixel to
the corresponding segmentation and Dii

P̄
=
∑

j P̄
ij . P̄ can

be computed by

P̄ =
πP + PTπ

2
, (9)

where π is the stationary distribution of the corresponding
Markov chain of the alternating random walk (PTπ = π).
We can derive a similar spectral method as in [8,14] to obtain
the approximate solution to the optimization problem (8).

3. EXPERIMENTS

We report experimental results on two datasets: the iCoseg
benchmark with the ground truth [11] as well as a sequence
of clinical short-axis echocardiac images temporally sampled
from the diastole to systole [15].

For the iCoseg dataset, because we know the ground truth,
we compute the F-measure to evaluate the performance:

ASModelSimNCut

ASModelSimNCut

SimNCut

SimNCut

Fig. 2. Visual comparison of segmentation results by differ-
ent competing methods for the Bear category of images in
iCoseg. The first row contains the original images in iCoseg.
The second row shows the co-segmentation results obtained
by our proposed method. The third row provides the results
produced by the feature-based normalized cut based on the
overall feature similarity matrix S̄ for all derived superpix-
els across images (SimNCut). The last row displays results
based on implementing normalized cut on individual images
independently (NCut).

Fmeasure = 2 ∗ precision ∗ recall
precision+ recall

(10)

where precision = T∩R
T with T denoting the obtained seg-

mentation by segmentation methods and R the ground truth;
and recall = T∩R

R . Examples of the segmentation results are
also provided for visual inspection. For echocardiac images,
only visualization of obtained segmentation results are given
due to the lack of the ground truth.

3.1. The iCoseg Dataset
The iCoseg benchmark [11] consists of several categories of
images. Each category contains images with the same objects
or similar objects of the same kind. It is challenging to seg-
ment those images in iCoseg because the objects vary in terms
of shape, illumination, and view perspectives. The dataset has
been adopted as the benchmark to evaluate different image
segmentation methods [11].

In order to demonstrate the strength and potential of our
proposed graph-based co-segmentation method, we compare
our co-segmentation results with the results obtained from
separate segmentation of individual images as well as the re-
sults from a feature-based clustering method that considers all
derived superpixels from all the given images. For segment-
ing individual images, we adopt the classical normalized cut
algorithm (NCut) [16] as the competing algorithm with the
exactly same segment graph construction for each image. For
the feature-based clustering method considering all superpix-
els across images, we apply the normalized cut on the overall
similarity matrix S̄, which is similar to the constructed simi-
larity graph with each element reflecting the pairwise similar-
ity based on the feature descriptor of the corresponding pair
of superpixels within and across images (SimNCut).
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Table 1. Segmentation performance comparison for the com-
peting algorithms

iCoseg Method Precision Recall F-measure
proposed 0.8317 0.8119 0.8217

Cheetah SimNCut 0.7223 0.876 0.7918
NCut 0.5726 0.6866 0.6245

proposed 0.8424 0.8536 0.848
Bear SimNCut 0.8886 0.3777 0.5301

NCut 0.5776 0.6157 0.5961
proposed 0.9679 0.9037 0.9347

Goose SimNCut 0.9227 0.8913 0.9067
NCut 0.525 0.7617 0.6216

proposed 0.4536 0.8969 0.6025
Taj Mahail SimNCut 0.3584 0.7429 0.4835

NCut 0.3858 0.779 0.516
Table 1 gives the F-measure together with the precision

and recall indices for the obtained segmentation results by
all three competing methods for four categories of images in
iCoseg. It is clear that our graph-based co-segmentation algo-
rithm outperforms the other two competing algorithms based
on the accuracy of segmentation results, which demonstrates
that our method can integrate the useful information within
and across images based on the constructed multi-partite
graph with segment graphs constructed from respective im-
ages and the similarity information across images through
the similarity graph. By borrowing strengths across im-
ages through the proposed alternating random walk, we can
achieve better segmentation performance for multiple images.
To further illustrate the performance difference of all three
competing algorithms, we display all the segmentation results
for the category of images with bears in Fig. 2. It is also obvi-
ous visually that our method has obtained the most promising
segmentation results. Especially, for the image in the third
column of Fig. 2, we are able to successfully segment out the
bears by borrowing superpixel similarity information from
other images compared to other competing methods. The
segmentation results by our graph-based co-segmentation for
the other three categories of iCoseg images: Cheetah, Goose,
and Taj Mahal, are also provided for visual inspection in
Fig. 3.1. Overall, our new method based on multiple network
clustering yields promising segmentation results in iCoseg.

3.2. Echocardiac Image Sequence

We analyze a sequence of four echocardiac images sam-
pled from the cardiac cycle from diastole to systole. Our
co-segmentation results are illustrated in Fig. 4, from which
we find that visually, our method extracts endocardiums cor-
rectly.

We note that the obtained endocardium boundaries based
on the co-segmentation results are not smooth due to the
use of superpixels when constructing the graphical repre-
sentation. We will further explore different strategies to
derive appropriate superpixels for more accurate and high-

ASModel
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Joulin et al., CVPR10

Joulin et al., CVPR10ASModel ASModelASModel

Fig. 3. Segmentation results for Cheetah, Goose and Taj Ma-
hal categories in the iCoseg benchmark. The first, third, and
fifth rows display the original images in iCoseg and the sec-
ond, fourth, and sixth rows illustrate our segmentation results.

resolution endocardium segmentation in medical image se-
quences. In addition, segmentation results are also depen-
dent on the feature descriptors as well as adopted feature
similarity measures. Depending on the characteristics of
given image sets, they may need to be invariant with respect
to imaging conditions in different images so that final co-
segmentation can provide robust results. We plan to further
explore these directions together with our proposed graph-
based co-segmentation method to improve the performance
in future. ASModel ASModel

ASModel ASModel

Fig. 4. Co-segmentation results for the echocardiac image
sequence. The overlaid images with a white background vi-
sualize the identified endocardiums in these four images.

4. CONCLUSIONS

We proposed a new graph-based image co-segmentation
framework to simultaneously segment multiple images by
viewing each image as a graph of superpixels and integrating
information shared among multiple images through a sim-
ilarity graph. The construction of this multi-partite graph
based on superpixels across all images is presented and an
alternating random walk strategy is developed to successfully
segment similar objects of interest shared in the given images.
Our preliminary experiments have demonstrated the superi-
ority of our co-segmentation algorithm over segmentation
based on individual images, which motivates us to further
investigate improved graph-based information integration for
more accurate and robust image and video co-segmentation.
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