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ABSTRACT
Random walks (RW) is a popular technique for object segmentation.
Apart from the satisfactory performance in various applications, its
most appealing advantage is the computational efficiency. However,
RW often fails to produce complete and connected results in fine-
structured (FS) object segmentation. To utilize the high efficiency
and overcome the drawbacks in tackling FS objects, we develop a
novel approach within the RW framework. Specifically, we propose
to introduce labeling preference learned from the image data into
the RW model to guide the propagation of random walkers. With the
help of the guidance, random walkers are more likely to propagate
correctly to the FS regions, thus yielding more accurate results. Sim-
ilar to RW, this approach also bears properties such as computational
efficiency, closed-form solution and unique global optimum. More-
over, it has the capacities of handling disconnected objects and trans-
ferring segmentation. Comparative experimental results demonstrate
that the proposed approach achieves the state-of-the-art performance
in FS object segmentation, with a low requirement of runtime.

Index Terms— Random walks, data-guided random walks,
fine-structured object segmentation, labeling preference

1. INTRODUCTION

Object segmentation is an important problem in image processing
and understanding. During the past decades, a variety of thoughtful
approaches have been developed [1–6]. In many cases, they can pro-
duce satisfactory results, but they often fail to handle fine-structured
(FS) objects due to the thin and elongated object structures. This
drawback prevents these approaches from taking effects in practical
applications such as image synthesis and plant modeling. Therefore,
FS object segmentation remains a challenging task.

Approaches for object segmentation can be roughly categorized
into two groups. One consists of classical approaches based on basic
techniques, e.g., graph cuts [2] and random walks [4], and the other
includes the variants of these basic techniques.

Graph cuts (GC) [2] is an effective and efficient technique for
object segmentation. It formulates the segmentation task as an in-
ference problem on a pairwise Markov random field (MRF), and
global optimum is achieved via min-cut/max-flow algorithm [7]. As
GC tends to minimize the length of object boundaries, it does not
apply to FS objects, which is known as shrinking bias [8–13]. Ran-
dom walks (RW) [4] is a typical label propagation based approach.
Specifically, for each unlabeled pixel, its label is specified accord-
ing to the probability of a random walker starting from it to reach a
labeled pixel. Despite the weaknesses in tackling FS objects, RW is
still crucial for object segmentation due to its reasonable physical
explanations, computational efficiency and unique global optimum.
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Fig. 1. Illustration of the improvement of introducing guidance into
the RW model. (a) Source images with scribbles (red-object, blue-
background). (b) Foreground likelihood learned from the seeds spec-
ified by the scribbles. (c) Results of RW. (d) Results of the proposed
Dg-RW. (e) Ground truth. Images in the last row are the correspond-
ing zoomed-in regions indicated by the green box.

Numerous variants of the basic techniques have been proposed
to improve their performance. Among these variants, the ones most
relevant to this work are those specially addressing shrinking bias.

To enhance the completeness and connectivity of the segment-
ed FS objects, an intuitive strategy is to introduce certain priors, e.g.,
connectivity [9], bounding box [14] or tree shape [15], as topological
constraints. Unfortunately, incorporating these priors often leads to
NP-hardness, thus the optimization procedures are time-consuming
and global optima can not be guaranteed. Moreover, as for the ap-
proaches in [9, 15], the extra interactions required for each fine part
make them impractical for applications.

Another strategy is to develop a more reasonable model. Coop-
erative graph cuts (CGC) [12] is a typical example. By selectively
reweighting the graph edges, the cost of cutting out an FS object with
long boundaries is considerably reduced, thus the inherent object
structures are more likely to be maintained. As minimizing the ener-
gy function of CGC is NP-hard, an iterative strategy is developed to
settle for an approximate solution. To achieve the global optimum,
this problem is elegantly reformulated as an inference problem in a
higher-order MRF [16] called deep random field (DRF) [13]. The
performance of this approach is satisfactory, but the model complex-
ity and time required for the exact inference are quite high.

As stated, approaches for FS object segmentation often suffer
from high complexities in both models and optimization procedures.
In this paper, we propose a simple but effective approach named
data-guided random walks (Dg-RW). It is developed within the RW
framework to utilize its mathematical simplicity and overcome its
drawback in segmenting FS objects. For each unlabeled pixel, the
probability for its labeling still depends on the propagation of the
random walker. More importantly, the propagation is not only based
on pairwise connections alone, but also guided by the labeling pref-
erence derived from the image data. With the help of the guidance,
the random walkers are more likely to propagate correctly to the FS
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regions, making Dg-RW able to handle FS objects (see Fig. 1). Its
effectiveness and efficiency are verified by extensive experiments.

The main advantages of Dg-RW are highlighted as follows:
1. Guidance for the propagation of random walkers is novelly

introduced into the RW model. Dg-RW thus largely outperforms RW
in FS object segmentation and achieves state-of-the-art performance.

2. Dg-RW bears several notable advantages over existing ap-
proaches dealing with FS objects [9, 12–15, 17], namely computa-
tional efficiency, closed-form solution and unique global optimum.

3. Dg-RW has other appealing properties, such as handling dis-
connected objects and transferring segmentation [18]. These proper-
ties make Dg-RW more appropriate for practical applications.

2. THE PROPOSED APPROACH
2.1. Notations
Given an image I, the RGB feature vector of pixel i is denoted by
pi ∈ R3. We use G = (V, E ,W) to denote the weighted graph cor-
responding to I, where the node set V corresponds to the pixels in I,
the edge set E contains the pairs of neighboring nodes and each edge
eij ∈ E has a weight wij ∈ W that encodes the similarity of neigh-
boring nodes i and j. The seeds specified by the user interactions are
denoted by two subsets of I, namelyO and B, with labels fO = +1
and fB = −1 denoting object and background respectively.

2.2. A brief review on random walks
Given the labeled nodes (or user-specified seeds), the goal of RW
is to assign each unlabeled node i with label fi ∈ {fO, fB}1 [4].
Specifically, each unlabeled node i is assigned with a probability xi
that a random walker starting from this node first reaches a node
labeled fO on the weighted graph G. The problem of calculating the
probabilities of all the nodes, or the vector x = {x1, x2, . . . , xn}T
(n is the number of pixels in I) is formulated as minimizing the
following quadratic energy function with respect to x [4]:

ERW (x) = xTLx , (1)

where L is the graph Laplacian matrix, defined as L = D −W.
In matrix W, the (i, j)-th entity is defined as wij if eij ∈ E or 0
otherwise. Matrix D is diagonal, with the i-th diagonal entity defined
as dii =

∑n
j=1 wij . The weight wij is typically defined as

wij = exp(−β‖pi − pj‖22) , (2)

where β is a free positive parameter and ‖ · ‖2 denotes `2-norm.
For the n nodes inG, we partition them into two subsets, VL and

VU (labeled and unlabeled). Correspondingly, the orders of them in
both L and x are rearranged so that all the labeled nodes come first.
Therefore, L and x can be decomposed into block matrices, namely

L =

[
LL B
BT LU

]
, x =

[
fL
xU

]
, (3)

where fL contains all the known labels, i.e., for each node i ∈ VL,

fi =

{
fO, if node i ∈ O
fB , if node i ∈ B .

(4)

According to [4], minimizingERW (x) in Eq. (1) with respect to xU

is equivalent to solving a sparse system of linear equations:

LUxU = −BTfL . (5)

For two-label segmentation problems, each node i ∈ VU is then
assigned with a label fi = fO if xi ≥ 0 or fi = fB otherwise.

1It is worth noting that RW is originally proposed for simultaneous multi-
label segmentation [4], but this work only focuses on two-label, or objec-
t/background segmentation, and can be viewed as a particular case of RW.
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Fig. 2. Graph structures of (a) RW and (b) Dg-RW. On the basis of
RW, we additionally add two virtual nodes O (red) and B (blue) to
denote object and background respectively. They are fully connected
to each node in G and these connections serve as guidance for the
propagation of the random walkers. Red/blue connections indicate
that the corresponding nodes are assigned as object/background.

2.3. Data-guided random walks

Despite many appealing properties (refer to [4]), RW suffers from
several inherent drawbacks. According to [4], in Eq. (5) LU is non-
singular only if G is connected, or each connected component of G
contains a seed, making RW inappropriate for images with many
disconnected objects. Apart from being used as boundary condition-
s (i.e., fL) to ensure the nonsingularity of LU , the seeds have not
been fully exploited for other usages. Moreover, since the random
walkers are limited to propagate according to only pairwise connec-
tions, label information is difficult to reach the FS regions, thus RW
often fails to accurately capture the object boundaries and details.

To overcome the drawbacks of RW, we propose a novel approach
in the following. We observe that the performance of RW is prone to
degrade mainly because only image gradients (refer to Eq. (2)) are
used in the propagation of random walkers, while other information
is not. For this reason, we propose to incorporate labeling preference
into the RW model to guide the propagation. As illustrated in Fig. 2,
on the basis of the RW model, we additionally add two virtual nodes
O and B to denote object and background, respectively. Each node
i ∈ V is connected to the two nodes with weights wi,O and wi,B

calculated by

wi,O =
log Pr(pi|fO)

log Pr(pi|fO) + log Pr(pi|fB)
, wi,B = 1−wi,O , (6)

where the two probabilities Pr(pi|fO) and Pr(pi|fB) are the fore-
ground and background likelihood of node i respectively. Note that
the graph structure in Fig. 2(b) is similar to that of GC [2], but they
have different explanations2. Since the weights indicating the label-
ing preference are derived from the image data, we name the pro-
posed approach data-guided random walks (Dg-RW).

The guidance for node i is then formulated as an energy term

Eg(xi) = wi,O(xi − fO)2 + wi,B(xi − fB)2 . (7)

For all the nodes in I, the energy terms sum into

Eg(x) = xTx− 2(fOwO + fBwB)
Tx+ C1 , (8)

where w∗ = {w1,∗, w2,∗, . . . , wn,∗}T (‘∗’ denotes the subscripts
‘O’ or ‘B’) and C1 is a constant independent of x.

By combining the two energy terms in Eq. (1) and Eq. (8) to-
gether, we obtain the energy function of Dg-RW, which is

2In Dg-RW the two virtual nodes are used to guide the propagation, while
in GC they work as the source and sink nodes of the flow network [2].
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Fig. 3. Comparison of RW and Dg-RW in handling disconnected ob-
jects. (a) Source image and ground truth. (b) Scribbles (red-object,
blue-background) on a single object (top: left object alone, middle:
right object alone) and both objects (bottom). (c) Results of RW. (d)
Results of Dg-RW. Note that Dg-RW performs much better than RW
in capturing the inherent structures of the disconnected objects.

E(x) = ERW (x) + λEg(x)

= xT(L+ λI)x− 2λ(fOwO + fBwB)
Tx+ λC1 ,

(9)

where λ is a positive parameter to indicate the relative importance
between the two energy terms and I is an identity matrix. Let L̂ =
L+λI, ŵ = λ(fOwO+fBwB) and ignore the constant, we obtain

Ê(x) = xTL̂x− 2ŵTx . (10)

Similar to Eq. (3), we decompose L̂, ŵ and x into

L̂ =

[
L̂L B̂

B̂T L̂U

]
, ŵ =

[
ŵL

ŵU

]
, x =

[
fL
xU

]
, (11)

In this way, Eq. (10) can be rewritten with respect to xU as

Ê(xU ) = xT
U L̂UxU + 2fTL B̂xU − 2ŵT

UxU + C2 . (12)

whereC2 is a constant independent of xU . Minimizing the quadratic
function Ê(xU ) with respect to xU is equivalent to solving a sparse
system of linear equations, with a closed-form solution

L̂UxU = ŵU − B̂TfL . (13)

As with in RW, we binarize the optimal solution x∗
U to be fU , and

obtain the final labeling f = [fTL , f
T
U ]T for the segmentation task.

2.4. Some properties of Dg-RW

Similar to RW, Dg-RW also has the advantages such as computa-
tional efficiency, closed-form solution and unique global optimum.
Meanwhile, due to the introduction of the guidance, Dg-RW is capa-
ble of tackling FS objects. Moreover, in comparison to L, the nonsin-
gularity of L̂ = L+λI is guaranteed and it is unnecessary to require
G is connected, or each connected component contains a seed [4].
This yields another two appealing properties of Dg-RW, e.g., han-
dling disconnected objects and transferring segmentation [18].

Fig. 3 illustrates the capacity of Dg-RW in tackling disconnected
objects. It is known that RW fails to correctly segment a connected
component if it does not contain a seed. This issue has already been
addressed in [19], where the approach is designed to reduce the re-
quired amount of interactions for images with many disconnected
objects, e.g., blood cell images. In our approach, with the help of
the guidance, label information is likely to propagate to such com-
ponents, yielding satisfactory results. This property also shows that
Dg-RW is robust to the variations of seed locations.

Transferring segmentation [18] means given an exemplar image
with seeds, Dg-RW can segment other images with similar appear-
ances even in absence of seeds. It can be interpreted as follows. The

(a) Exemplar image 
 with seeds

(b) Test images
 without seeds

(c) Test images 
 with seeds 

Exemplar FG like. w seeds Dg-RW w seeds True

Test2

FG like. w/o seeds

FG like. w/o seeds

Test1 True

True

Dg-RW w/o seeds

Dg-RW w/o seeds

Test1

Test2

FG like. w seeds

FG like. w seeds

Dg-RW w seeds

Dg-RW w seeds

RW w seeds

RW w seeds

(for reference)

Fig. 4. Demonstration of transferring segmentation using Dg-RW.
(a) Exemplar image with seeds (green-object, blue-background). (b)
Test images without seeds. (c) Test images with seeds (these results
are attached only for reference). Note that Dg-RW produces compa-
rable results for the test images both with and without (‘w’ or ‘w/o’)
seeds. In addition, these results are much better than those of RW,
which only works when seeds are provided.

parameters of appearance models are first learned from the exemplar
image. Then they are used to calculate the likelihood of the test im-
age to obtain the corresponding weight ŵ. Then Ê(x) in Eq. (10) is
minimized directly with respect to x, yielding a closed-form solution

L̂x = ŵ , (14)
and the final labeling f is the binarization of the optimal solution x∗.
Fig. 4 demonstrates this property. In Fig. 4(b), we see Dg-RW pro-
duces satisfactory results for the test images. Therefore, given an
exemplar image, this property enables us to automatically segment
similar images without interactions. The interaction burden thus can
be largely reduced when segmenting images containing similar con-
tents or captured in similar scenes, or sequential frames in videos.

3. EXPERIMENTS

In this section, we apply the proposed Dg-RW to FS object segmen-
tation and make comparisons with several representative approaches.

Data set description. Totally we evaluate on three data sets:
1. ‘Twigs&Legs’ data set [12,20], a challenging data set contain-

ing 16 images for evaluating FS object segmentation approaches.
2. ‘FS100’ data set, our own collection, consisting of 100 images

involving various FS objects, with hand-labeled ground truth.
3. ‘Grabcut’ data set [3, 21], a benchmark for image segmenta-

tion containing 50 images, with the default trimaps as interactions.
This data set is used to verify that Dg-RW can also handle relatively
compact objects and complex backgrounds.

Evaluation criteria. We use two criteria for the evaluations:
Intersection-over-union score (IOU) [22]: the area of the inter-

section of the segmented object mask and the ground truth object
mask divided by the area of their union.

Error rate (ERROR) [12]: the number of incorrectly labeled pix-
els divided by the total number of pixels in the image.

Approaches for comparisons. We compare six approach-
es with Dg-RW. Random walks (RW) [4] is the baseline. Graph
cuts (GC) [2] and Laplacian coordinates (LC) [6] are two powerful
and efficient basic techniques, and LC is also a label propagation
based approach. Geodesic star convexity (GSC) [11], cooperative
graph cuts (CGC) [12] and deep random field (DRF) [13] are spe-
cially developed to tackle FS objects, and DRF is the state-of-the-art
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Fig. 5. Qualitative results of nine images from ‘Twigs&Legs’, ‘FS100’ and ‘Grabcut’ data sets. Each row corresponds to one image from the
three data sets. In each row, from left to right are source image, scribbles or trimap (red-object, blue-background), results of RW, LC, GC,
GSC, CGC, DRF and Dg-RW, and ground truth. Due to the space limitation, please zoom in the images for the details.

Table 1. Quantitative comparisons of the seven approaches. All the results listed here are averaged on all the images in each of the three data
sets. The IOUs and ERRORs in red indicate the best and blue the second best. Best viewed in color.

Data sets Criteria RW LC GC GSC CGC DRF Dg-RW

Twigs&Legs IOU (%) 68.8813 65.0474 73.8629 73.1072 77.7556 79.9500 79.8411
ERROR (%) 4.9439 6.6369 1.4413 1.4847 0.9858 0.8875 0.9043

FS100 IOU (%) 76.8536 74.9332 87.7275 85.5719 88.7020 89.4986 89.4164
ERROR (%) 5.6966 6.2953 2.0267 2.7132 1.8768 1.7657 1.7397

Grabcut IOU (%) 91.5424 92.6499 92.5849 92.7446 92.5904 92.6877 93.2777
ERROR (%) 1.1075 0.8695 0.9428 0.9121 0.9381 0.9091 0.7825

approach. For these six approaches, we use the publicly available
codes [23–29] provided by the authors and tune the parameters to
achieve the overall best performance on each data set. To calculate
the foreground and background likelihood for Dg-RW (see Eq. (6)),
as well as GC, GSC, CGC and DRF, we fit two Gaussian mixture
models each with five components to the seeds [3, 9, 12, 13]. In
Dg-RW, we adopt an 8-neighbor graph structure and uniformly set
β = 85 and λ = 0.001 for all the three data sets.

Qualitative comparisons. Qualitative comparisons of the re-
sults on two images from ‘Twigs&Legs’, five from ‘FS100’ and two
from ‘Grabcut’ are shown in Fig. 5. It can be seen that Dg-RW
achieves better or comparable performance, with complete and con-
nected segmented objects and accurate object boundaries and details.

Quantitative comparisons. The IOU and ERROR averaged on
all the images in each data set are listed in Table 1. Although Dg-RW
is slightly inferior to the state-of-the-art approach DRF in some cas-
es, e.g., on ‘Twigs&Legs’, their overall performance is comparable
and Dg-RW also outperforms all the other approaches. Particularly,
the large improvement over RW verifies the effectiveness of intro-
ducing the guidance. Moreover, it can be concluded from the perfor-

mance on ‘Grabcut’ that Dg-RW is also capable of handling compact
objects and complex backgrounds. On the other hand, efficiency is
also a main concern about Dg-RW. For the seven approaches list-
ed in Table 1, their averaged runtime is 1.28s, 2.43s, 0.61s, 1.07s,
31.60s, 41.09s and 1.85s, respectively. Obviously, Dg-RW is a quite
efficient approach in comparison to other ones dealing with FS ob-
jects, namely CGC and DRF.

4. CONCLUSION
In this paper, we presented a novel data-guided random walks ap-
proach for the challenging task of fine-structured object segmen-
tation. In this approach, labeling preference is introduced into the
RW model, with the purpose of effectively guiding the the propaga-
tion of random walkers. The random walkers are thus more likely
to propagate correctly to the fine-structured regions. This approach
bears several appealing properties, such as computational efficien-
cy, closed-form solution, unique global optimum, as well as the ca-
pacities of handling disconnected objects and transferring segmen-
tation. Comparative experiments demonstrate that the proposed ap-
proach is effective to tackle fine-structured objects and achieves the
state-of-the-art performance with a low requirement of runtime.
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