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ABSTRACT

This paper presents a method to detect and segment recurring
object from multi-view images. Given a sequence of images
of an object captured by multiple cameras, the method firstly
detects sparse object-like regions utilizing generic region pro-
posals. We propose a semi-supervised framework to exploit
both appearance cues learned from rudimentary detections
of object-like regions, and the intrinsic geometric structures
within multi-view data. This framework generates a diverse
set of object proposals in all views which underpins a robust
object segmentation method to handle objects with complex
shape and topologies, as well as scenarios where the object
and background exhibit similar color distributions.

Index Terms— Multi-view, object detection, segmenta-
tion

1. INTRODUCTION

Detecting and segmenting an object captured from multiple
viewpoints have gained interest in recent years due to the
proliferation of imaging devices. Stable and accurate multi-
view object segmentation is fundamental to many computer
vision applications, such as 3D reconstruction, image edit-
ing, encoding and post-production. This is a very challenging
task due to the lack of prior knowledge about object appear-
ance, shape or position. Furthermore, variance in pose, il-
lumination and occlusion relationships introduce ambiguities
that in turn induce the potential for localized under- or over-
segmentation.

Existing methods for segmenting object in multi-view im-
ages are mostly interactive approaches [1, 2, 3, 4]. Yet ful-
ly automatic methods remain useful in scenarios where the
human in the loop is impractical, such as large scale user-
generated content processing. Prior automatic algorithms [5,
6, 7, 8, 9, 10, 11] typically draw upon geometric constraints
implicit within multi-view scenario. These methods either si-
multaneously derive segmentation whilst performing costly
visual hull estimation [5], or rely on the color distributions of
the object and background being very different [6, 7, 10, 11],
or require the fixation of cameras on the object [6, 8], or dense
depth recovery of the whole scene [9]. Aside from those as-
sociated limitations and challenges, these methods lack an
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explicit notion of what an object should look like. Conse-
quently, the low-level grouping of pixels usually results in
mis-segmentation.

In contrast to previous techniques, our algorithm learn-
s and extracts object proposals from scratch to account for
the variation of object’s appearance across viewpoints and
scene clutters, as opposed to performing low-level grouping
of pixels based on color or depth. Our strategy is to create
feature-based rudimentary detections of regions for the ob-
ject by learning from weakly labelled examples of object-like
regions. These detections serve as informative indicators of
the appearance and location of the object. We propagate this
learned prior knowledge on an undirected graph consisting of
regions, solving the semi-supervised learning efficiently. In-
ference at the region level further makes our object proposal
extraction approach a practical solution for automatic object
segmentation for multi-view images.

2. APPROACH

Our goal is to extract object-like regions from multi-view im-
ages, from which we learn appearance and objectness to au-
tomatically segment the foreground objects. We achieve our
goal in three main steps: (1) discover object-like regions (2)
generate a cohort of object proposals by propagating prior
knowledge in a semi-supervised learning framework (3) per-
form object segmentation by learning appearance and object-
ness from proposals.

2.1. Discovering Object-Like Regions

The goal of this step is to discover an initial set of object-like
regions from all views. Throughout the discovery process,
we maintain two disjoint sets of image regions: H and U ,
which represent the discovered object-like regions and those
remain in the general unlabeled pool, respectively. H is ini-
tially empty whilst U is set to be the regions of all images.
Since we assume no prior knowledge on the size, shape, ap-
pearance or location of the object, our algorithm operates by
producing a diverse set of object-like regions in each image
using [12] which is a category independent method to identi-
fy object-like regions.

To find the most likely object-like regions among the large
set of returned regions, we firstly form a candidate pool C by
taking the top N (N=10) highest-scoring regions from each
image. The score of each region consists of two parts: (1) ap-
pearance score A(r) of each region r returned from [12] (2)
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the visibility V(r) of each region r based on the sparse 3D re-
construction. Specifically, each 3D point from SfM [13, 14]
has a number of measures, with each measure representing
its visibility, 2D location and photometric properties on the
corresponding view. Thus we compute the visibility of each
region r by accumulating the number of 3D visibility mea-
sures that region r encompasses. Let Pr be the set of 3D
points which are visible for region r in one of the views, and
np be the number of visibilities for each 3D point p ∈ Pr.
The visibility of region r can be computed as

V(r) = 1− exp(−
∑
p∈Pr

np

<
∑
p∈P np >

),

where P represents all the 3D points and<
∑
p∈P np > is the

average visibility of all 3D points. This definition of region
visibility takes into account of not only the number of visible
3D points in region r, but also the overall visibility of each
3D points. Our assumption is that one region is more likely to
be object-like if it contains more stable feature points whose
stability is measured by our visibility measure. The total score
is the summation of appearance and visibility of each region.

Then we identify groups of object-like regions that may
represent a foreground object by performing spectral cluster-
ing [15] in C. To perform clustering, we firstly compute the
pairwise affinity matrix between all regions ri and rj ∈ C as

Wri,rj = exp(−χ
2(ha(ri), ha(rj))

2β
), (1)

where ha(ri) and ha(rj) are the color histograms of ri and
rj respectively, and β is the average distance between all re-
gions. All clusters are ranked based on the average score of
its comprising regions. The clusters among the highest ranks
correspond to the most object-like regions but there may also
be noisy regions, which are added toH.

Each object-like region may correspond to different part
of the object from particular image, whereas they collective-
ly describe the object from different viewpoints. We devise
a discriminative model to learn the appearance of those most
likely object regions. The initial set of object-like regions H
form the set positive instances, while negative instances are
randomly sampled outside the bounding box of the positive
instances. We use this labeled training set to learn linear SVM
classifier for two categories. The classifier provides a con-
fidence of class membership taking the features of a region
which combines texture and color features, as input. This
classifier is then applied to all the unlabeled regions across all
the views. After this classification process, each unlabelled
region ri is assigned with a weight Yi, i.e. the SVM margin.
All weights are normalized between -1 and 1, by the sum of
positive and negative margins.

2.2. Generating Multi-View Object Hypotheses

The appearance model from Sec. 2.1 provides an informa-
tive yet independent and incoherent prediction on each of the
unlabelled regions regardless the inherent spatial and geomet-
ric structure revealed by both labeled and unlabeled regions.
To generate robust multi-view object hypotheses, we adopt

Fig. 1. Multi-View object hypotheses generation (a) source
image (b) positive predictions from SVM (c) predictions from
semi-supervised learning captures the coherent intrinsic struc-
ture within visual data, using SVM predictions as input (d)
generated object hypotheses with average objectness values
indicated by the brightness.

a semi-supervised learning approach, exploiting the intrinsic
structure within image data, multi-view geometry and the ini-
tial local evidence from the holistic object appearance model.
Fig. 1 (b) shows the positive predictions of each region, from
SVM predictions and semi-supervised learning respectively.
The prediction from SVM exhibits unappealing incoherence,
nonetheless, using it as initial input, semi-supervised learning
gives smooth predictions exploiting the inherent structure of
data, as shown in Fig. 1 (c).

To perform semi-supervised learning, we define a weight-
ed graph Gs = (V, E) spanning all the views with each n-
ode corresponding to a region, and each edge connecting t-
wo regions based on intra-view and inter-view adjacencies.
Intra-view adjacency is defined as the spatial adjacency of re-
gions in the same view whilst inter-view adjacency coarsely
determined based on the visibility of reconstructed sparse 3D
points from sparse reconstruction. Specifically, the regions
which contain 2D projections (2D feature points) of the same
3D point are adjacent. See Fig. 2 for an illustrative descrip-
tion. Note that accurate camera calibration is neither assumed
nor required to construct this graph.

We compute the affinity matrix W of the graph using the
same formulation in Eq. 1. Since sparsity is important to re-
move label noise and semi-supervised learning algorithms are
more robust on sparse graphs [16], we set all Wij are set to
zero if ri and rj are not adjacent. Semi-supervised learning
propagates label information from labeled nodes to unlabeled
nodes. Let the node degree matrix D = diag([d1, . . . , dN ])

be defined as Di =
∑N
j=1Wij , where N = |V|. We for-

mulate the problem as minimizing an energy function E(X)
with respect to all region labels X:

E(F ) =

N∑
i,j=1

Wij |
Fi√
Di

− Fj√
Dj

|2 + µ

N∑
i=1

|Fi − Yi|2, (2)
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where µ > 0 is the regularization parameter, and Y are the de-
sirable labels of nodes which are normally imposed by prior
knowledge. The first term in (2) is the smoothness constraint,
which encourages the coherence of labelling among adjacent
nodes, whilst the second term is the fitting constraint which
enforces the labelling to be similar with the initial label as-
signment. The optimization problem in Eq. (2) can be solved
by an iteration algorithm in [17, 18, 19]. More efficiently, we
solve it as a linear system of equations. Differentiating E(F )
with respect to F we have

∇E(F )|F=F∗ = F ∗ − SF ∗ + µ(F ∗ − Y ) = 0 (3)

where S = D−1/2WD−1/2. It can be transformed as

F ∗ − 1

1 + µ
SF ∗ − µ

1 + µ
Y = 0 (4)

Denoting γ = µ
1+µ , we have (I − (1 − γ)S)F ∗ = γY .

An optimal solution for F can be solved using the Conjugate
Gradient method with very fast convergence. We use the pre-
dictions from SVM classifier to assign the values of Y . The
diffusion process can be performed for positive and negative
labels separately, with initial labels Y in Eq. 2 substituted as
Y+ and Y− respectively:

Y+ =

{
Y if Y > 0

0 otherwise
(5)

and

Y− =

{
−Y if Y < 0

0 otherwise.
(6)

Combining the diffusion processes of both the object-like re-
gions and background can produce more efficient and coher-
ent labelling, taking advantage of their complementary prop-
erties. We perform the optimization for two diffusion pro-
cesses simultaneously as follows:

F ∗ = γ(I − (1− γ)S)−1(Y+ − Y−). (7)

This enables a faster and stable optimization avoiding sepa-
rate optimizations while giving equivalent results to the indi-
vidual positive and negative label diffusion.

Finally, the regions which are assigned with label F > 0
from each view are grouped. Specifically, we use the final la-
bel F to indicate the level of objectness of each region. The
final proposals are generated by grouping the spatially adja-
cent regions (F > 0), and assigned by an objectness value by
averaging the constituent region-wise objectness F weighted
by area. The grouped regions with the highest objectness per
view are added to the set of object proposals P . Exemplar
object proposals are shown in Fig. 1 (d).

2.3. Multi-View Object Segmentation

We formulate multiple view segmentation as a pixel-labelling
problem of assigning each pixel with a binary value which
represents background or object respectively. We define a
graph by connecting pixels spatially corresponding to the
same 3D sparse points, which is similar to the region-based
graph case in Sec. 2.2. In contrast to the previous graph
during semi-supervised learning, each of the nodes in this

graph is a pixel as opposed to a region. We define the energy
function that minimizes to achieve the optimal labeling:

E(x) =
∑
i∈V

ψi(xi) + λ
∑

i∈V,j∈Ni

ψi,j(xi, xj) (8)

where Ni is the set of pixels adjacent to pixel i in the graph
and λ is a parameter.

The pairwise term ψi,j(xi, xj) penalizes different labels
assigned to adjacent pixels:

ψi,j(xi, xj) = [xi 6= xj ]exp(−d(xi, xj))

where [·] denotes the indicator function. The function
d(xi, xj) computes the color and edge distance between
neighboring pixels:

d(xi, xj) = β(1 + |SE(xi)− SE(xj)|) · ||ci − cj ||2

where SE(xi) (SE(xi) ∈ [0, 1]) returns the edge probability
provided by the Structured Edge (SE) detector [20], ||ci−cj ||2
is the squared Euclidean distance between two adjacent pixels
in CIE Lab colorspace, and β = (2 < ||ci − cj ||2 >)−1 with
< · > denoting the expectation.

The unary term ψi(xi) defines the cost of assigning label
xi ∈ {0, 1} to pixel i, which is defined based on the per-pixel
probability map by combining color distribution and region
objectness:

ψi(xi) = −log(w · U ci (xi) + (1− w) · Uoi (xi))

whereU ci (·) is the color likelihood andUoi (·) is the objectness
cue. We adopt the binary graph cut [21] to minimize Eq. 8
and the resulting label assignment gives the foreground object
segmentations of the multi-view images.

We estimate two Gaussian Mixture Models (GMM) in
CIE Lab colorspace to model the appearance of the object
and background. Pixels belonging to the set of object pro-
posals are used to train the GMM of the object, whilst ran-
domly sampled pixels in the complement of object proposals
are adopted to train the GMM for the background. Given the
estimated GMM color models, per-pixel probability U ci (·) is
defined as the likelihood observing each pixel as object or
background respectively can be computed.

The extracted object proposals provide explicit informa-
tion of how likely a region belongs to the foreground object
(objectness) which can be directly used to drive the final seg-
mentation. We set the per-pixel likelihood Uoi (·) to be related
to the objectness value (F in Eq. 2) of the region it belongs
to:

Uoi (xi) =

{
Fi if xi = 1

1− Fi if xi = 0
(9)

3. RESULTS

For implementation, we empirically set µ = 3.0 to balance
the impact of the prior labelling and the local labelling s-
moothness. For graph cut optimization, we empirically set
λ = 5 and w = 0.35. These parameters are fixed for the
evaluation.
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Table 1. Quantitative results on four datasets. The proposed method is compared with four state-of-the-art methods.
Dataset Our method Djelouah [11] Kowdle [9] Djelouah [10] Vicente [22]

COUCH 99.7±0.2 99.0±0.2 99.6±0.1 98.8±0.8 NA
TEDDY 98.6±0.3 98.0±1.0 98.8±0.4 98.8±0.4 NA
CHAIR1 99.4±0.2 98.6±0.3 99.2±0.4 88.0±0.2 86.9±7.8

CAR 98.5±0.5 97.0±0.8 98.0±0.7 NA 91.4±4.3

Fig. 2. Sparse 3D reconstruction and rough camera pose us-
ing Structure from Motion (SfM). Regions or pixels in views
containing the 2D projection of the same 3D point are deemed
adjacent in the graph.

To demonstrate the efficacy of our approach, we perform
evaluations on challenging datasets. Note that the scarcity of
publicly available multi-view image datasets made the com-
parisons difficult. We obtained five datasets from two state-
of-the-art methods: BUSTE dataset from [7] for qualitative e-
valuation; COUCH, TEDDY, CHAIR1, CAR from [9] which
we use for both qualitative and quantitative evaluation. We
use the same evaluation metric as [9, 11], computing the in-
tersection over union to measure the segmentation quality.

Fig. 3 shows the qualitative results applying our method
on five datasets. The proposed method demonstrates superior
segmentation accuracy in challenging scenarios, e.g. in the
presence of large illumination variation (row 1), overlapping
color distribution and hairy boundary (row 3), complex topol-
ogy (row 4), and diffused inter-reflections between object and
backgrounds (row 5).

As shown in Table 1, our method quantitatively outper-
forms the competing methods in 3 out of 4 datasets, with rela-
tively less variations on all datasets, which confirms what we
observed from qualitative evaluation. Our method substan-
tially outperforms the competing methods on CHAIR1 and
CAR which are more challenging than the rest. This indi-
cates that, with an explicit notion of object, our method is
more robust in dealing with complex topology and cluttered
scene than the traditional low-level pixel group approaches.
The stereo based method [9] slightly outperforms our method
on TEDDY, owing to the low level pixel grouping as well as
depth plane detection which requires smaller camera baseline
for the purpose of obtaining the stereo. The method [10] also
marginally outperforms our method on TEDDY, possibly due
to the low level pixel grouping and accurate camera parame-

Fig. 3. Qualitative evaluation results on BUSTE (row 1),
COUCH (row 2), TEDDY (row 3), CHAIR1 (row 4), and
CAR (row 5) datasets.

ters. Note that accurate camera calibration is neither assumed
nor required in our proposed method.

4. CONCLUSION

We presented an algorithm that automatically discovers re-
curring object-like regions and generates object hypotheses
through a novel semi-supervised learning framework in multi-
view images, which in turn underpins a robust object seg-
mentation method. By harnessing a top-down explicit notion
of object, our method overcomes the limitations of previous
bottom-up methods that often mis-segment an object and de-
livers high quality segmentation.
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