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ABSTRACT 
 
In this paper, we propose an algorithm of abnormal event 
detection in crowded scenes using sparse representation over 
the bases of normal motion feature descriptors. To construct 
an over-complete dictionary, we extract the histogram of 
maximal optical flow projection (HMOFP) feature from a 
set of normal training frames. Then the K-SVD dictionary 
training method is used to get a redundant dictionary after a 
process of selecting the training samples, which is better 
than the dictionary simply composed by the HMOFP feature 
of the whole training frames. In order to detect whether a 
frame is normal or not, we use the -norm of the sparse 
reconstruction coefficients (i.e., the sparse reconstruction 
cost, SRC) to show the anomaly of the testing frame, which 
is simple but very effective. The experiment results on UMN 
dataset and the comparison to the state-of-the-art methods 
show that our algorithm is promising. 
 

Index Terms—HMOFP, K-SVD, Sparse representation, 
Abnormal events, Crowded scenes 
 

1. INTRODUCTION 
 
Nowadays, with the advancement of people’s public safety 
awareness and the reduction of surveillance equipments’ 
cost, more and more surveillance cameras have been used in 
public places, such as markets, stadiums, museums, airports, 
train stations, etc. The research on crowd behaviors in public 
scenes draws more and more attention and has become a hot 
topic in the field of computer vision.  

The algorithms of abnormal event detection can be 
classified into three main categories: macroscopic modeling, 
microscopic modeling and crowd events detection [1], [2]. 
Social force model based abnormal crowd behavior 
detection was introduced in [3]. In [4], a model named social 
attribute-aware force model was proposed. In [5], a novel 
abnormal event detection framework based on the newly 
developed spatial-temporal co-occurrence Gaussian mixture 
models (STCOG) was presented, which required a short 
training period and had a fast processing speed. The method 
using histogram of optical flow was described in [6]. A 

similar pixel-based motion feature HMOFP for abnormal 
event detection was proposed in [7]. 

Unlike most existing approaches used to detect abnormal 
events, sparse representation has obtained more and more 
attentions in recent years. In [8], a model aimed at anomaly 
detection was described, which utilized SRC over the 
normal dictionary to measure the normalness of the tested 
frame. To get an optimized dictionary in the process of 
sparse representation, some methods were presented, such as 
online dictionary learning for sparse coding [9], non-
negative matrix factorization (NMF) based on the robust 
Earth Mover’s Distance (EMD) [10], etc.  

The work presented here has focused on motion feature 
extraction and dictionary construction. During the process of 
motion feature extraction, we only select one component in a 
feature bin, and the works in [6], [8], [9], [10] take all the 
components in a feature bin as the motion feature. Also, we 
utilize the K-SVD dictionary training method [11] after 
some preprocessing, which is different to previous studies. 
 

2. MOTION FEATURE EXTRACTION 
 
Optical flow field is the movement on the surface of 
grayscale images, which reflects the movement information 
of two consecutive frames. Optical flow can provide the 
information of direction and amplitude of the moving object 
in a scene, which can describe the behavior of people very 
well. In this paper, we adopt the Horn-Schunck (HS) method 
to compute the optical flow of frame images and propose a 
novel scene descriptor, called as the Histogram of Maximal 
Optical Flow Projection (HMOFP).  

As shown in Figure 1, the optical flow field of frame  is 
divided into  image blocks with overlap areas, and each 
block contains  pixels. Then we deal with the 
optical flow in each block as follows.  are 
segmented into  bins. For an image block, the optical flow 
vector of each pixel must belong to a bin. Thus, each bin 
may contain several optical flow vectors. We project all 
optical flow vectors in a same bin onto the angle bisector of 
this bin. Then the length of the maximal projection vector is 
selected as the feature descriptor. For example, in Figure 

2(a), there are two vectors  and  falling into the first 
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bin. It is easy to know that the projection of  onto the 

angle bisector of the first bin is longer than that of . Thus, 

the length of the projection vector  is selected as the 
feature descriptor of the first bin. After computing  blocks, 
we obtain the feature descriptor vector of each image block, 
which can be denoted as , where 

. For the  block,  

 denotes the maximal amplitude of all projection 

vectors in the  bin. As shown in Figure 2(b), we take the 
concatenation of the  feature descriptor vectors, which is 
named , as the global HMOFP feature of frame .                                                                                                                                           
 

 
Figure 1: Block-division of the optical flow field belonging to 
frame . 

 

 
(a)                                                 (b) 

Figure 2: (a) The calculation of the histogram of maximal optical 
flow projection (HMOFP) in each bin. (b) Components of the 
global feature descriptor of frame . 

 
In order to describe a crowded scene well, enough motion 

information of the crowd should be achieved. To describe 
the motion of a crowd, we need two factors: explicit 
directions and the moving distance along each direction. The 
operation of segmenting the  space into  bins provides 
us ample information to describe the directions of moving 
people. To let the direction in each bin be unique, we select 
the  angle bisectors as the direction standard. Since there 
may be far more than one optical flow vector in each bin, in 
order to enhance the distinction between the normal scene 
and the abnormal scene, we select the maximal vector 
projection rather than the sum of all the vector projections 
on the bisector as the motion feature descriptor. If we ignore 
the background area, the amplitudes of motion vectors 

belong to the normal area are very small in a normal frame 
and the motion vectors corresponding to the abnormal area 
are large in an abnormal frame. Usually, the number of 
normal motion vectors is much more than that of the 
abnormal area. If we use the sum of all projection vectors on 
the angle bisector as the feature descriptor of each bin, the 
accumulation of the massive small motion vectors in the 
normal frame may confuse the small number of large motion 
vectors in the abnormal frame, i.e., the sum of all projection 
vectors on the angle bisector in each bin of the normal frame 
is likely to be close to that of the abnormal frame. Thus, in 
order to improve the distinguishability between the abnormal 
and normal frames, we select the length of the maximal 
projection vector as the feature descriptor of each bin, as it 
is demonstrated in Figure 2. 

 
3. DICTIONARY CONSTRUCTION  

 
In this section, we address the problem how to construct the 
dictionary. Given an initial training set denoted as 

, where  is the number of frames in the 
set.  denotes a frame image of the set and it is 
called a training frame in this paper. The corresponding 
feature pool is , where  . 

denotes the motion feature of a training 
frame, and it is called a training sample in this paper. Our 
method to compute the motion feature is on the basis of 
optical flow, and the way to calculate optical flow based on 
two consecutive frames is only effective to the first frame, so 
the maximal subscript of  is . We realize that in the 
feature pool , there may be such training samples that have 
little relationship with the others. So we should do effort to 
delete such samples. Considering the optimization problem: 
       (1) 

where . (1) is the general NP-hard 

problem. We can use the method in [12] to relax the -norm 
optimization problem as: 
        (2)          

In the matrix form, the problem can be described as 
            (3) 

where . 
We utilize the orthogonal matching pursuit (OMP) 

method [13] to solve (3). After the optimal  is achieved, 
we inspect each row in it via the equation: 

                                                 (4) 

where  is the  row of . We 

calculate the -norm of each . If the result is , we 

delete the corresponding  column in . The optimized  is 
denoted as . 

After the training sample set is optimized, the K-SVD 
algorithm is utilized to generate an optimal dictionary with 
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proper redundancy, such that the atoms in the dictionary can 
be more representative for the normal features. The K-SVD 
algorithm is described as follows. 
 
Algorithm 1: The K-SVD algorithm 
 
Task: Find the best dictionary to represent the training 
samples in  as sparse compositions, by solving  

 

where  is a small number, and . 

Initialization: Set the dictionary matrix  
with  normalized columns. Set . 
Repeat until convergence (stopping rule): 
(1) Sparse Coding Stage: Use the OMP algorithm to 

compute the representation vectors  for each example 
, by approximating the solution of 

 

(2) Code book Update Stage: For each column in , 

update it by 
(a) Define the group of examples that use this atom,  

 

(b) Compute the overall representation error matrix, , by  

. 

(c) Restrict  got from (b) by choosing only the columns 
corresponding  to , and obtain  , where 

 is defined as a matrix of size  , with ones 
on the  entries and zeros on the other 
entries. 

(d) Apply SVD decomposition Choose the 

updated dictionary column  to be the first column of  

. Update the coefficient vector to be the 

first column of  multiplied by . 
(3) Set . 
 

When this process of the K-SVD algorithm ends, we 
obtain an optimized redundant dictionary. 
 

4. ABNORMAL EVENT DETECTION 
 
In this section, an algorithm to detect abnormal events in 
surveillance video is described in detail. Suppose that in a 
given scene, there is a set of training frames,  

, which describe the normal behavior of 
crowded people. The general procedures to detect the newly 
incoming frames based on the histogram of maximal optical 
flow projection (HMOFP) feature are introduced as follows. 
   Step 1: Calculate the optical flow of the training frames, 
i.e., , at each pixel of the first  
frames by the HS method: 

               (5) 

where  is the size of the frame image in the initial 
training set. 

Step 2: Extract the motion feature HMOFP of the first  
training frames in the training set, which is described as the 
set . 

(6) 

Step 3: Based on HMOFP, we delete the useless columns 
in  and get the optimized dictionary  with the K-SVD 
algorithm as introduced in section 3. 

Step 4: Get the HMOFP feature of the incoming frame  

and calculate the -norm of the sparse reconstruction 
coefficient vector  with OMP method over the dictionary 

, which is denoted as  
                                    (7) 

where  is the SRC value. The frame  is detected as 
normal if the following criterion is satisfied ,                                     
where  is a user defined threshold that controls the 
sensitivity of the algorithm to abnormal events. 
 

5. EXPERIMENTAL RESULTS 
 
There are three different crowded scenes in UMN dataset 
[14], which are named lawn, indoor and plaza respectively, 
and the total frame number is 7739 with a  
resolution. The normal events are people walking randomly 
in the scene, and the abnormal events are human running 
away at the same time. In our experiments, the image block 
size is set as  and there is no overlapping proportion 
in two neighboring blocks.  are divided into 18 
bins, i.e., . The length of the HMOFP feature is 288. 
The initial dictionary is a discrete cosine transform (DCT) 
matrix with a  size, and it is trained with the first 
400 normal frames in each scene. 
 
5.1. Detection in the lawn scene 
 
The video sequence of the lawn scene contains 1453 frames 
in total (i.e., the first 1452 frames are detected).  Two 
different events in the lawn scene are shown in Figure 3. The 
detection result of the lawn scene is shown in Figure 4. 
 
5.2. Detection in the indoor scene 
 
The video sequence of the indoor scene contains 4144 
frames in total (i.e., the first 4143 frames are detected).  Two 
different events in the indoor scene are shown in Figure 5. 
The detection result of the indoor scene is shown in Figure 6. 
 
5.3. Detection in the plaza scene 
 
The video sequence of the plaza scene contains 2142 frames 
in total (i.e., the first 2141 frames are detected).  Two 
different events in the plaza scene are shown in Figure 7. 
The detection result of the plaza scene is shown in Figure 8. 

1788



 
     (a) The normal event            (b) The abnormal event 

     Figure 3: Two different events in the lawn scene. 
 

 
Figure 4: The classification result of the lawn scene. 

 

 
   (a) The normal event              (b) The abnormal event 

Figure 5: Two different events in the indoor scene. 
 

 
Figure 6: The classification result of the indoor scene. 

 

 
   (a) The normal event              (b) The abnormal event 

Figure 7: Two different events in the plaza scene. 

 

 
Figure 8: The classification result of the plaza scene. 

 
5.4. The receiver operating characteristic (ROC) curve 
 
In each scene, the ROC curve is shown in Figure 9. The area 
under the ROC curve (AUC) is 0.9976 in the lawn scene, 
0.9570 in the indoor scene and 0.9869 in the plaza scene. 

 
Figure 9: The ROC curves of the three scenes. 

 

The performances of our algorithm based on the HMOFP 
feature and of the state-of-the-art methods are shown in 
Table 1. Our algorithm outperforms the methods of Optical 
Flow [3], NN [8], STCOG [5] and HOFO [6] and is 
comparable to the other methods. However, our algorithm is 
with a simple model and a simplified SRC form.  

 

 
Table 1: The comparison of our proposed algorithm with the state-
of-the-art methods. 
 

6. CONCLUSIONS 
 
In this work, we proposed an algorithm to detect abnormal 
events in crowded scenes with global-frame scale. Our 
method contains two main procedures: one is to compute the 
histogram of maximal optical flow projection (HMOFP) 
descriptor of the input video sequence, the other is to utilize 
the optimized dictionary to calculate the SRC values of 
testing sets. The proposed method has been tested on UMN 
dataset with satisfying results about abnormal event 
detection. 
 

7. ACKNOWLEDGMENT 
 
This work is supported by the NSFC (nos. 61273274, 
61272028, 61572067 and 61370127), 973 Program (no. 
2011CB302203), National Key Technology R&D Program 
of China (nos. 2012BAH01F03, NSFB4123104, FRFCU 
2014JBZ004, and Z13111000191343), and Tsinghua-
Tencent Joint Lab for IIT. 

1789



8. REFERENCES 
 
[1] M. Thida, Y.L. Yong, P. Climent-Pérez, H-l. Eng, and P. 

Remagnino, “A literature review on video analytics of 
crowded scenes,” Intelligent Multimedia Surveillance, pp. 17-
36, 2013. 

 
[2] Zhan, Beibei, et al, “Crowd analysis: a survey,” Machine 

Vision and Applications, vol. 19, no. 5-6, pp. 345-357, 2008. 
 
[3] R. Mehran, A. Oyama, and M. Shah, “Abnormal crowd 

behavior detection using social force model,” IEEE 
Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 935-942, 2009. 

 
[4] Y. Zhang, L. Qin, H. Yao, and Q. Huang, “Social attribute-

aware force model: exploiting richness of interaction for 
abnormal crowd detection,” IEEE Transactions on Circuits 
and Systems for Video Technology, vol. 25, no. 7, pp.1231 -
 1245, 2015. 

 
[5] Y. Shi, Y. Gao, R. Wang, “Real-time abnormal event detection 

in complicated scenes,” IEEE International Conference on 
Pattern Recognition (ICPR), pp. 3653–3656, 2010. 

 
[6] T. Wang, H. Snoussi, “Detection of abnormal visual events via 

global optical flow orientation histogram,” IEEE Transactions 
on Information Forensics and Security, vol. 9, no. 6, pp. 988-
998, 2014. 

 
[7] Ang Li, Zhenjiang Miao, Yigang Cen, Tian Wang, and 

Viacheslav Voronin, “Histogram of Maximal Optical Flow 
Projection for Abnormal Events Detection in Crowded 
Scenes,” International Journal of Distributed Sensor 
Networks, vol. 2015, Article ID 406941, 11 pages, 2015. 
doi:10.1155/2015/406941 

 
[8] Y. Cong, J. Yuan, J. Liu, “Sparse reconstruction cost for 

abnormal event detection,” IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 3449-3456, 2011. 

 
[9] Duan, Shishi, Xiangyang Wang, Xiaoqing Yu, “A new method 

of abnormal event detection based on sparse 
reconstruction,” IEEE International Conference on Audio, 
Language and Image Processing (ICALIP), pp. 390-395, 
2014. 

 
[10] X. Zhu, J. Liu, J. Wang, C. Li, H. Lu, “Sparse representation 

for robust abnormality detection in crowded scenes,” Pattern 
Recognition, vol. 47, no.5, pp. 1791-1799, 2014. 

 
[11] M. Aharon, M. Elad, A. Bruckstein, “K-SVD: An Algorithm 

for Designing Overcomplete Dictionaries for Sparse 
Representation,” IEEE TRANSACTIONS ON SIGNAL 
PROCESSING, vol. 54, no. 11, pp. 4311-4322, 2006. 

 
[12] D. L. Donoho, Y. Tsaic, “Extensions of compressed sensing,” 

Signal Processing, vol. 86, no. 3, pp. 533-548, 2006. 

 
[13] J. Tropp, A. C. Gilbert, “Signal recovery from random 

measurements via orthogonal matching pursuit,” IEEE 

Transactions on Information Theory, vol. 53, no. 12, pp. 
4655-4666, 2007. 

 
[14] UMN, Unusual crowd activity dataset of University of 

Minnesota, department of computer science and engineering. 
http://mha.cs.umn.edu/movies/crowd-activity-all.avi, 2006. 

1790


