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ABSTRACT

We propose a novel camera pose estimation or perspective-

n-point (PnP) algorithm, based on the idea of consistency re-

gions and half-space intersections. Our algorithm has linear

time-complexity and a squared reconstruction error that de-

creases at least quadratically, as the number of feature point

correspondences increase.

Inspired by ideas from triangulation and frame quanti-

sation theory, we define consistent reconstruction and then

present SHAPE, our proposed consistent pose estimation

algorithm. We compare this algorithm with state-of-the-art

pose estimation techniques in terms of accuracy and error

decay rate. The experimental results verify our hypothesis on

the optimal worst-case quadratic decay and demonstrate its

promising performance compared to other approaches.

Index Terms— Perspective-n-point problem, camera

pose estimation, multi-view geometry, triangulation, camera

resectioning.

1. INTRODUCTION

Camera pose estimation, or the perspective-n-point (PnP)

problem, aims to determine the pose (location and orienta-

tion) of a camera, given a set of correspondences between 3-D

points in space and their projections on the camera sensor [1].

The problem has applications in robotics, odometry [2], and

photogrammetry, where it is known as space resection [3].

In the simplest case, one can use an algebraic closed-form

solution to derive the camera pose from a set of minimal

3D-to-2D correspondences. Usually, three correspondences

are used and hence these algorithms are called perspective-3-

point or P3P methods [4, 5].

When there is a redundant set of points available (more

than three), the most straightforward solution is to use robust

algorithms, such as RANSAC, which run P3P (or its vari-

ants) on minimal subsets of correspondences [6]. However,

such algorithms suffer from low accuracy, instability and poor

noise-robustness, due to the limited number of points.

An alternative approach is to directly estimate the camera

pose, using an objective function, such as the �2-norm of the

This work was supported by the ERC Advanced Grant—Support for

Frontier Research—SPARSAM Nr: 247006.

A. Ghasemi is additionally supported by a Qualcomm Innovation Fel-

lowship.

reprojection error, defined over all available point correspon-

dences [7, 8].

Minimisation of the �2-norm leads to the maximum likeli-

hood estimator, if we assume a Gaussian noise model. How-

ever, the main drawback of the �2-norm is that its resulting

cost function is non-convex and usually has a lot of local min-

ima [9]. This forces us to use iterative algorithms that are

reliant on a good initialisation [10].

The shortcomings of the �2-norm have encouraged re-

searchers to consider using other norms, such as the �∞-

norm [11]. The main advantage of the �∞-norm is that its

minimisation can be formulated as a quasi-convex prob-

lem and solved using Second-Order Cone Programming

(SOCP) [9, 12]. This leads to a unique solution, however

SOCP techniques are computationally demanding and rely

on the correct tuning of extra parameters [13].

There is an interesting, well known, duality between pose

estimation and triangulation, which allows common algo-

rithms to be used for both problems [8, 14]. Triangulation

estimates the location of a point given its projection in a

number of calibrated cameras [15]. Various triangulation

algorithms exist, which once again mostly relying on min-

imising the reprojection error [9]. To see the duality, notice

that in both cases we have a set of projections and we want to

estimate the location of an object of interest; i.e., the camera,

in pose estimation, and the point, in triangulation.

In this paper, we propose a fundamentally novel approach

to the camera pose estimation problem. Under certain as-

sumptions, this leads to the optimal estimate for both the cam-

era location and orientation, and a consistency region, where

the true camera pose must lie. Our algorithm has a linear

time-complexity, allowing it to be used efficiently with a large

number of points. Moreover, exploiting the duality between

camera pose estimations and triangulation, we use our earlier

work [16, 17] to show that the expected error decays at least

quadratically as we increase the number of available point

correspondences.

In the rest of this paper, we formally define the problem

and our imaging setup. For simplicity, we limit our discus-

sion to 1-D vision systems, in which points in R
2 are mapped

to points on a 1-D image sensor. Although this special case

is independently important, e.g. in developing autonomous

guided vehicles or planar motion [14], the extension to 3-

D vision is straightforward. In addition, we assume that the

points’ locations are known exactly.

After defining the problem setup, we propose our algo-
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rithm, coined SHAPE (Sequential Half-Space Aggregation

for Pose Estimation). We start with the simpler case of known

camera orientation (i.e. estimating only the location of the

camera) and then extend the algorithm to compute the orienta-

tion as well. Finally, we present experimental results compar-

ing our algorithm to state-of-the-art techniques. The results

verify our hypothesis that the worst-case error decay rate of

our algorithm is quadratic and demonstrate its promising per-

formance compared to other approaches.

2. PROBLEM SETUP

We now introduce the digital pinhole camera model which

will be assumed throughout this paper. Our aim is to estimate

the orientation θ and location t = (tx, tz) of a camera having

a resolution of N pixels, given M 2D-to-1D correspondences

between points si ∈ R
2, and their pixelised projections qi on

the camera.

As depicted in Fig. 1, we assume that the i-th point source

si, is projected to the position pi on the camera’s image plane

before being quantised to qi, the centre of the corresponding

pixel. As well as modelling the finite pixel width, qm also

models the finite sensor width, by obtaining the value∼ if the

projected point lies outside the field of view. Later we will

consider algorithms that take the quantised feature projections

qi and estimate the pose (tx, tz, θ) of the camera.

As shown in Fig. 1, the camera is centred at t and ori-

entated θ radians anti-clockwise from the global coordinate

system. With this notation, the projected point pi is given by1

pi = f
(si,x − tx) cos θ + (si,z − tz) sin θ

(si,z − tz) cos θ − (si,x − tx) sin θ
. (1)

Here, f is the focal length of the camera and (si,x, si,z) and

(tx, tz) are the coordinates of the i-th point and camera cen-

tre, respectively, with respect to a global coordinate system.

The quantised point, qi, is given by qi = QΛ(pi), where

QΛ is the quantisation function defined as2

QΛ(y) =

{⌊
y
w

⌋
w + w

2 − τ
2 ≤ y ≤ τ

2 ,

∼ otherwise.
(2)

In (2), Λ = {τ, w} encapsulates the sensor width τ and the

pixel width w = τ
N , which define the quantisation error.

In the rest of the paper, we will be interested in PnP al-

gorithms that take the pixelised projections qi and the true

locations of the M point sources si, and produce an estimate

of the camera pose (t, θ).

1Here, and in the rest of this paper, we have assumed perspective pro-

jection, which is standard in most imaging applications. However, we can

derive similar results for other camera models. In fact, orthogonal projection

have been extensively studied in the quantisation literature [18, 19] and also

in image processing [16].
2This definition is valid when N is even. For odd N ,

QΛ(y) =

⎧⎨
⎩
sign(y)

⌊ |y|
w

+ 1
2

⌋
w − τ

2
≤ y ≤ τ

2
,

∼ otherwise.

p i
q i

zc
0

f

xc

θ
t = (tx, tz)

si = (si,x, si,z)

Fig. 1: The acquisition setup for a pinhole camera with a res-

olution of four pixels, acquiring a point source s.

3. SHAPE: SEQUENTIAL HALF-SPACE
AGGREGATION FOR POSE ESTIMATION

We now describe the proposed pose estimation algorithm, de-

noted SHAPE. We will first assume that we know the cam-

era’s orientation before considering the more general case.

3.1. Localising a Camera with Known Orientation

We would like to see how each point source constrains the

location of the camera. Given a quantised projection qi, we

know that the true projected point pi satisfies

qi − w

2
≤ pi ≤ qi +

w

2
, (3)

where w is the width of a pixel. Combining (1) with (3) and

rearranging yields

aitx + bitz + ci ≥ 0, (4)

and

a′itx + b′itz + c′i ≤ 0. (5)

Here ai, a
′
i, bi, b

′
i, ci, and c′i are defined as

ai = f cos θ − (qi +
w

2
) sin θ,

bi = f sin θ − (qi +
w

2
) cos θ,

ci = (qi +
w

2
)(si,z cos θ + si,x sin θ)− fsi,x cos θ − fsi,z sin θ,

a′
i = f cos θ − (qi − w

2
) sin θ,

b′i = f sin θ − (qi − w

2
) cos θ,

c′i = (qi − w

2
)(si,z cos θ + si,x sin θ)− fsi,x cos θ − fsi,z sin θ.

Therefore, assuming we know the orientation of the cam-

era, each point source constrains the camera location to lie

between two half-spaces; i.e., within a semi-infinite triangle.

When there are multiple points, then there is a semi-

infinite triangular region for each point and the camera must

lie in their intersection. Therefore, we need to compute the in-

tersection of all half-spaces which produces a polygon where

the camera centre t must lie. Every point within this polygon

is consistent with the projections and has an equal chance of
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being the true camera location, as long as the feature detec-

tion accuracy is uniformly bounded within the pixel limits.

SHAPE selects the point that leads to the minimum mean

squared distance to all points inside the consistency polygon.

This point is the centre of mass of the consistency region and

can be computed very efficiently in constant time.

Figure 2 visualises one example of applying our proposed

algorithm to a camera positioning problem with three known

points and their projections in a 6-pixel camera.

3.2. Simultaneous Estimation of Camera Location and
Orientation

When the camera orientation is unknown, we have an extra

dimension which leads to a 3D solution space (tx, tz, θ). We

previously analysed the tx-tz slice for the true camera orienta-

tion and saw that there was a polygon, which led to estimates

of the camera location that were consistent with the measure-

ments. Let us now consider slices for an arbitrary angle θ.

As θ changes, each half space rotates around its point source.

For many angles, there is no common intersection between

the half spaces but there is a range of angles for which the

intersection creates a polygon. Thus there is a 3D shape cre-

ated by the union of all these slices, containing all estimates

consistent with the measurements.

We would like to find the centre of mass of this 3D shape,

leading to an estimate of the location and orientation. This

3D region is neither a polytope nor convex and calculating its

centroid is not trivial. We can find an accurate approximation

by taking the weighted average of a finite number of slices.

More precisely, suppose the camera orientations are dis-

cretised to Θ = {0, 2π
k , 4π

k , . . . , 2π}, and that, for every ori-

entation α ∈ Θ, we have computed the location-consistency

regionRα and its centre of mass C(Rα). We approximate the

centre of mass of the 3-D consistency shape as

(t̂x, t̂z, θ̂) =

∑
α∈ΘA(Rα)C(Rα)∑

α∈ΘA(Rα)
, (6)

where A(Rα) is the area of the location-consistency region

Rα. This is SHAPE’s final estimate of the camera pose.

3.3. Time Complexity of the SHAPE Algorithm

The core part of the SHAPE algorithm is a series of 2M half-

space intersection (M is number of points). Since the area

between half-spaces is a triangle in the finite case, we can

solve this problem using polygon intersection algorithms.

The worst-case time-complexity for polygon and half

space intersection is O(M logM), in the general case [20].

However, since the point-consistency regions form convex

polygons, which can be intersected in O(V1 + V2) time,

where V1 and V2 are the number of vertices of the two poly-

gons [21]. Therefore, a series of intersections between convex

polygons can be computed inO(MVmax), where Vmax is the

maximum number of vertices of an intermediate polygon.

In our case, it can be intuitively shown that the number of

s1

s2s3

t̂

Fig. 2: An example of using polygon intersections for esti-

mating the camera pose. Boundaries of half-spaces are de-

picted as black lines. The intersection of half-spaces is the

light-grey polygon. The centroid of this polygon is the recon-

structed centre t̂ of the camera.

vertices of intermediate polygons do not grow with the num-

ber intersected polygons, for any practical number of points.

Therefore, we can bound Vmax and hereby reach a O(M), or

linear time-complexity for our algorithm.

3.4. Error Decay Rate of the SHAPE Algorithm

We would like to know if our algorithm converges to the true

latent value, as the number of point correspondences tend to

infinity, and how fast the error decays.

By adapting results from frame quantisation theory [18],

we have recently shown a quadratic error decay rate for the

dual triangulation problem with circular and linear camera ar-

rays [16, 17].

Triangulation with a linear camera array is equivalent to

the PnP problem with collinear feature points and a known

camera orientation. It follows that, if the shortest distance

between the camera and the line where the points lie does not

exceed fb
2w , where b is the largest distance between the points,

the error of the SHAPE algorithm decays quadratically as the

number of feature point correspondences increases.

In general, however, if the points are distributed randomly,

the error decays much faster, since the large consistency re-

gions of the linear case are unlikely to occur. This is why we

obtain a much faster error decay rate in practice, as can be

seen in Fig. 6. Moreover, the large consistency regions gen-

erated by collinear and coplanar point sets, explain the diffi-

culties traditionally seen by PnP algorithms in these cases.

4. SIMULATION RESULTS

To assess our algorithm, we have randomly generated a set of

camera poses and for each one randomly added points within
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Fig. 3: An example of point sets used in the experiments, as

well as the latent, true camera pose.

6 8 10 12 14 16
0

0.5

1

1.5

·10−3

Number of points

S
q

u
ar

ed
er

ro
r

(m
2
)

SHAPE

�2-norm minimisation

�∞-norm minimisation

Fig. 4: Results of camera location estimation with fixed ori-

entation.

the cameras field of view. Figure 3 depicts a sample config-

uration used in the experiments. The camera has a resolution

of 320 pixels and a field of view of 90 degrees.

We have compared the result of SHAPE to the results of

minimising the reprojection error measured with the �2 and

�∞ norms. For the �2-norm, the cost function is non-convex,

resulting in multiple minima. However, we have calculated

the global minimum using a brute-force strategy, in order to

justify the selected criteria and not the specific methods.

Figure 4 depicts the averaged result of camera pose esti-

mation using the three approaches. Here we have assumed

that the camera orientation is known and given as an input to

the algorithms. Although initially, i.e. for a small number of

correspondences, the results of SHARP are worse than the

norm-based methods, our algorithm converges much faster

and the difference in accuracy becomes more evident as the

number of correspondences increases. Moreover, we can see

that the error of SHARP converges to 0, which is not the case

for norm-based approaches.

Figure 5 depicts the pose estimation results for the case of

unknown camera orientation. We can see that similar results

apply to this case as well.

To have a better visualisation of the convergence rate of

the algorithms, we have additionally depicted a log-log plot

of the error values, in Figure 6. In the log-log plot, conver-

gence rates correspond to the gradients. Therefore, it is easily

verified that the error decay rate of the SHAPE algorithm is

faster than other approaches.
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Fig. 5: Results of full camera pose estimation.
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Fig. 6: Log-log plot visualising the convergence rate of dif-

ferent algorithms.

5. CONCLUSION

We have proposed the SHAPE algorithm, a fundamentally

novel approach toward solving the PnP or camera pose es-

timation problem, using consistency regions and half-space

intersections. We showed that SHAPE converges to zero er-

ror as the number of point correspondences tends to infinity.

Moreover, we have shown that our algorithm benefits from a

linear time complexity.

Further work needs to be done to handle incorrect point

correspondances and uncertainty in the feature point loca-

tions. We can develop novel outlier-detection techniques to

remove points with large error and then increase the pixel

width for smaller error values. Another possible extensions

would be to incorporate other camera models and also re-

lax some known parameters of the problem, such as the focal

length or projections of some points.
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