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ABSTRACT
This paper describes the generation of a morphable model for external
ear shapes. The aim for the morphable model is to characterize an
ear shape using only a few parameters in order to assist the study of
morphoacoustics. The model is derived from a statistical analysis of
a population of 58 ears from the SYMARE database. It is based upon
the framework of large deformation diffeomorphic metric mapping
(LDDMM) and the vector space that is constructed over the space of
initial momentums describing the diffeomorphic transformations. To
develop a morphable model using the LDDMM framework, the initial
momentums are analyzed using a kernel based principal component
analysis. In this paper, we examine the ability of our morphable model
to construct test ear shapes not included in the principal component
analysis.

Index Terms— Morphable model, Ears, Currents, Shape analy-
sis

1. INTRODUCTION

This paper describes a morphable model for external ear shapes. Our
objective in creating the morphable model is to assist research into
the prediction of individualized 3D audio filters for listeners based on
the shape of their ears. The significance of the morphable model is
its ability to compress the representation of 3D ear shapes to a set of
parameters typically obtained by projection onto a set of orthogonal
base functions [1, 2]. This parameterisation of ear shapes using a
morphable model greatly aids in the study of morphoacoustics [3, 4, 5,
6], where the goal is to understand the link between variations in the
shape of an ear and their effect on the corresponding set of 3D audio
filter functions, referred to as head related impulse responses (HRIRs).
HRIRs vary for each listener because each listener has differently
shaped ears. There is an HRIR filter for each ear and each direction
in space and these HRIR filters enable the rendering of binaural 3D
audio for a listener.

Modeling ear shapes is a challenging task and ear shape deforma-
tions are arguably best described using a Riemannian space. In this
regard, large deformation diffeomorphic metric mapping (LDDMM)
is a framework to perform non-rigid diffeomorphic registration and
mapping between images, surfaces, curves and distributions in two
and three dimensional space [7, 8, 9, 10, 11, 12]. Diffeomorphic maps
provide a smooth, invertible, one-to-one transformation between the
source and target shape. In particular, considerable work has been
undertaken to formulate an algorithm for mapping 3D triangulated
surfaces [13, 14]. In a recent paper [15] we show how LDDMM
coupled with fast multipole boundary element method (FM-BEM)
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simulations can assist with the study of morphoacoustics and in [16]
we show how a template ear shape can be estimated using LDDMM.
The template ear is a critical element of our morphable model, but
we leave the description of its calculation to [16] as it is beyond the
focus of this paper. While LDDMM permits a multiscale approach
to mapping ear shapes as discussed in [16], the morphable model
presented here is based on single scale LDDMM transformations. In
this work we use the LDDMM framework combined with a kernel
based principal component analysis (KPCA) technique [17, 18, 19]
to construct a morphable model for ears. In particular, our morphable
model uses the concept of the linear space of initial momentums [20]
within the framework of LDDMM and a set of coupled differential
equations known as the “shooting equations” to construct and model
ears. We use the SYMARE database of ears described in [21] for
generating our morphable model. This paper describes the morphable
model and examines its ability to reconstruct new ear shapes, i.e., ear
shapes outside of the database used for constructing the model.

2. METHODS

2.1. LDDMM Framework

LDDMM [22, 12] is a mathematical framework that can be employed
for the registration and morphing of three-dimensional shapes [14,
13]. It is based on theories from functional analysis, variational
analysis and reproducible kernel Hilbert spaces. In the LDDMM
framework we model a 3D-shape as a mesh with triangular faces,
which we refer to as S(X) where X is the matrix specifying the mesh
vertices and S represents the mesh connectivity (the triangular faces).
We now describe two fundamental LDDMM operations that are at
the core of this work. The first operation, referred to as LDDDM
mapping, consists in determining the diffeomorphic transformation
that morphs an initial shape S1(X), with X ∈ RN×3, into a target
shape S2(Y) with Y ∈ RM×3. The result of this operation is a set
of vectors, {αn(0)}1≤n≤N , defined at the vertices X and known
as the initial momentum vectors, that characterize the diffeomorphic
transformation entirely. The second operation, referred to as geodesic
shooting, applys the morphing operation (i.e. the diffeomorphic flow)
described by the initial momentum vectors to a given shape.

2.1.1. LDDMM mapping

LDDMM models the mapping or morphing of S1(X) to S2(Y) as a
dynamic flow of diffeomorphisms of the ambient space, R3, in which
the surfaces are embedded. This flow of diffeomorphisms, φv(t, ·),
is defined via the partial differential equation:

∂φv(t,X)

∂t
= v(t) ◦ φv(t,X) , (1)

where v(t) is a time-dependent vector field, v(t) : R3 → R
3 for

t ∈ [0, 1], which models the infinitesimal efforts of the flow, and
◦ denotes function composition. Note that the superscript v on
φv(t,X) simply denotes that the flow of diffeomorphisms is defined
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for a particular time-dependent vector field v(t). This vector field
belongs to a Hilbert space of regular vector fields equipped with a
kernel, kV , and a norm ‖ · ‖V that models the infinitesimal cost of the
flow. In the LDDMM framework, we determine v(t) by minimizing
the cost function, JS1,S2 :

JS1,S2 (v(t)) = γ

∫ 1

0

‖v(t)‖2V dt+ E (S1(φv(1,X)), S2(Y)) ,

(2)

where E is a norm-squared cost measuring the degree of matching
between S1(φv(1,X)) and S2(Y). In this work we use the Hilbert
space of currents [8, 14] to compute E because it is easier and more
natural than using landmarks. The parameter γ is a parameter that
sets the relative weight of the two terms in the cost function. In this
work γ = 5× 10−5.

It can be shown that the time-dependent vector field, v(t), can
be expressed as a sum of momentum vectors, αn(t), with one mo-
mentum vector defined for each of the N vertices in X:

v(t) =
dx(t)

dt
=

N∑
n=1

kV (xn(t),x(t))αn(t) , (3)

where in this work we use the Cauchy kernel defined by:

kV (x,y) =
1

1 + ‖x−y‖2
σ2
V

, (4)

for x and y in ∈ R
3. The σV parameter is a scale parameter that

determines through the kernel, kV , the range of influence of the
momentum vectors αn(t). Setting σV to a larger value increases
the coupling in the motion of vertices that are further apart. In this
work, σV = 10 mm. Further, the initial momentum vectors, αn(0),
determine the diffeomorphic mapping of S1 to S2 entirely [17]. In
other words, S2 can be represented as a deformation of S1 through
the diffeomorphic flow defined by the initial momentum vectors
{αn(0)}1≤n≤N . In the following, we refer to the calculation of the
initial momentum vectors as the mapping operation, M :

{αn(0)}1≤n≤N = M (S1, S2) . (5)

2.1.2. Geodesic Shooting

Geodesic shooting consists in using a set of initial momentum vectors,
{αn(0)}1≤n≤N , to morph a shape S1 into another shape, S3. This is
done by solving the shooting equations, which couple the momentum
vectors to the vertex positions across time and are given by:

dαr(t)

dt
= −

N∑
n=1

〈αr(t),αn(t)〉∇xr(t)(kV (xr(t),xn(t)))

dxr(t)

dt
=

N∑
n=1

kV (xn(t),xr(t))αn(t) (6)

where 〈·, ·〉 denotes the inner product in R3 and∇x(t)(·) denotes the
gradient operator, further 1 ≤ r ≤ N . Note that the initial conditions
for Equations (6) are given by the initial positions and momentum
vectors. In the following, we refer to the process of morphing shape
S1 into shape S3 as the shooting operation, S :

S3 = S (S1, {αn(0)}1≤n≤N ) . (7)

2.2. Kernel Based Principal Component Analysis (KPCA)

In the previous section, we have shown how a given shape could be
represented as the deformation of another shape through a flow of
diffeomorphisms. In order to build a morphable model of ear shapes,
we represent every ear in a given population as a deformation of a
unique template shape, T , which represents the population’s average
ear. Details regarding the calculation of such a template are described
in [16]. In this work, we assume the template shape, T , is given. The
first step in our analysis is to calculate the initial momentum vectors
for every ear, Sl, in the population of L ears, as follows:

{αn
(l)(0)}1≤n≤N = M (T, Sl) (8)

Together with the template shape, the set of initial momentum
vectors form a rudimentary model of ear shape such that the tem-
plate shape can be morphed into any of the shapes in the population.
In order to simplify this model, we apply a kernel based Principal
Component Analysis (KPCA) to the deformations represented by the
initial momentum vectors. We use the kernel version of PCA because
the space of deformations is Riemannian.

In order to calculate the principal components, we calculate the
covariance matrix, C, which expresses the mutual correlation of the
different ear shapes in the space of deformations. To compute this
matrix we first construct a data matrix A ∈ R3N×L which contains
the initial momentum vectors for the entire population of ears:

A = [a1, a2, . . . , aL]3N×L (9)

where al denotes the column vector containing all the initial mo-
mentum vector coefficients for shape Sl. We then center the data by
subtracting the population average momentum vectors. The centered
data matrix, Â, is given by:

Â = [â1, â2, . . . , âL]3N×L (10)

where âl is the vector of the centered momentum vectors for the l-th
shape:

âl = al − ā with ā =
1

L

L∑
i=1

ai . (11)

We also form the kernel matrix, K, which contains the values of
the kernel function for every pair of vertex positions that comprise
the vertices, X, of the template shape T :

K =


K11 K12 . . . K1N

K21 K22

...
...

. . .
...

KN1 . . . . . . KNN

 ,

Kmn = kV (xm,xn) I3×3 , (12)

where I3×3 denotes the 3× 3 identity matrix.
The correlation between two shapes is calculated as the inner

product of the initial momentum vectors in the Hilbert space of
deformations, V . The correlation between shapes Si and Sj is given
by:

cij =
〈
{αn

(i)(0)}, {αn
(j)(0)}

〉
V

= âT
iKâj , (13)

where (·)T denotes the transpose of a vector or matrix. Thus, the
covariance matrix for the entire population of ears, C, is given by:

C = ÂTKÂ (14)

1772



In order to calculate the principal components, as well as the
coordinates of the ears in the basis of the principal components, we
perform the singular value decomposition of the covariance matrix C:

C = VDVT . (15)

The matrix of the principal components, U, can be then calculated
as:

U = ÂVD−
1
2 . (16)

Note that the principal components are orthogonal in the Hilbert space
of deformations, i.e., UTKU = I. It follows from Equation (16) that
Â = UD

1
2VT and therefore D

1
2VT provides the coordinates of the

different ear shapes in the basis of the principal components. Each
ear can thus be reconstructed by: (1) computing al = ā + UD

1
2 vl

( vl is the l-th column of VT); and (2) shooting from the template
in the al direction, i.e., Sl = S (T, {al}1≤n≤N ). In other words,
we now have a morphable model of ears in which each ear shape in
the population is described by L parameters, where L is the size of
the population of ears. Note that the dimension of the model can be
further reduced at the cost of reduced shape reconstruction accuracy
by keeping only the first Q (Q ≤ L) principal components.

2.3. Morphable Model of Ears

We now describe how a new ear shape Sp, that was not included in the
computation of the principal components, can be described using the
KPCA data. The computation of the model parameters for Sp can be
divided into three steps. First, compute the initial momentum vectors,
ap, corresponding to the morphing of the template T into shape Sp.
Second, the population average momentum vectors are subtracted
from ap to obtain the centered initial momentum vectors, âp. Third,
the centered momentum vectors are projected onto the principal
components to obtain the model parameters, ṽp. The procedure is
summarized below:

Algorithm 1 Computation of the Model Parameters for an Ear
Inputs: U, ā, Sp.

1: {α(p)
n (t)}1≤n≤N = M (T, Sp)

2: âp = ap − ā
3: ṽp = UTKâp
4: return ṽp

The reconstruction of shape Sp from the model parameters is
performed in two steps. First, the initial momentum vectors for shape
Sp are estimated by combining the principal components according
to the model parameters. Second, the shooting operation is used to
morph the template into S̃p, an approximation of shape Sp. The
shape reconstruction operation is summarized below:

Algorithm 2 Reconstruction of an Ear from the Model Parameters
Inputs: T , U, v̄p.

1: ãp = ā + Uṽp
2: S̃p = S (T, {ãp}1≤n≤N )

3: return S̃p

Note that shape S̃p is an approximation of Sp because: (1) the LD-
DMM operation M (T, Sp) does not match shapes perfectly; and (2)
the principal components may not enable perfect reconstruction of
the initial momentum vectors for shape Sp.

3. EXPERIMENTS

3.1. Experimental setup

A morphable model of ear shapes was created based on 58 different
ear shapes from the SYMARE database [21]. While the SYMARE
database is the largest database of its kind, 58 ears is not a large
number considering the human population and it is unclear how well
the morphable model can describe an arbitrary ear not included within
the database. In order to address this issue, we repeatedly left one
of the ears, Si, out of the dataset of 58 ears and formed a morphable
model based on the remaining 57 ears. We then examined the ability
of the morphable model to reconstruct the ear that was left out. In
other words, for each shape Si in the dataset, we applied the KPCA
analysis described in Section 2.2 using 57 ear shapes (i.e., leaving Si
out). Then, using the method described in Section 2.3 an approximate
ear shape S̃i was reconstructed. We then examined how accurately
the approximation S̃i matches the original shape Si using a shape
difference analysis based on currents (please refer to the Appendix).
Further, we examined the shape reconstruction accuracy as a function
of the number of principal components used to reconstruct the ear
shape. Note that in order to exclude the mismatch caused by the
LDDMM matching procedure, we actually compared the S̃i shapes
to the shapes Zi obtained by matching the template T to Si and
shooting using the true initial momentum vectors.

3.2. Results

Results are summarized in Figure 2. As expected the accuracy of the
model improves as the number of principal components increases.
However, there is very little difference between the results obtained
with 50 and 57 principal components, which indicates that the last
7 principal components have very little influence on the accuracy of
the model. Interestingly, the quality of the reconstruction strongly
depends on the ear considered. Some ears are reconstructed with great
accuracy using relatively few principal components, while others are
poorly reconstructed using the full basis of principal components.
This is illustrated in Figure 1 where examples of reconstructed ears
are compared to the corresponding reference shapes. Observe that
shapes Z1 and Z2 were reconstructed with no apparent mismatch,
while there is clear mismatch for shapes Z3, Z4 and Z5. In summary,
these results indicate that the morphable model is promising, but
requires a larger population of ears to enable the model to morph into
any possible ear shape.

4. CONCLUSION

In this paper we have presented a method for generating a morphable
model of ears using the LDDMM framework. The core idea of this
method is to apply KPCA to the initial momentum vectors corre-
sponding to morphing a template ear into the different ears in the
dataset. We tested the method over a dataset of 58 ear shapes and
examined how well each ear in this dataset would be reconstructed
using a model formed with the 57 remaining ears. The results indicate
that a larger dataset would be required to generate a model that can
morph into any ear shape.

5. APPENDIX: ANALYSING SHAPE DIFFERENCE USING
CURRENTS

In this appendix we describe a method for measuring the local mis-
match between two ear shapes. This method is based on the represen-

1773



S̃
(50)
1

Z1 S̃
(50)
2

Z2 S̃
(50)
3

Z3 S̃
(50)
4

Z4 S̃
(50)
5

Z5

Fig. 1. This figure compares ear shapes reconstructed using 50 principal components, S̃(50)
i , to the corresponding reference shapes Zi. Colors

(constant luminance, so examine online) on the shape indicate local shape mismatch calculated using the measure d̂(S̃
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i , Zi, f).
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Fig. 2. The shape reconstruction accuracy of the model as a function
of the number of principal components is shown. Red lines indicate
the median value of d̄(S̃i, Zi), blue boxes indicate the interquartile
range, whiskers indicate the whole data range and red crosses indicate
outliers. Note that ear shape S̃5 corresponds to the largest outlier for
30 and 40 principal components and that ear shape S̃4 corresponds to
the largest outlier for 50 and 57 principal components.

tation of surfaces as currents [14]. The current, [S1], corresponding
to shape S1 is characterized by a set of vectors, n1(f), defined as
follows: (1) there is one vector originating from the center, c1(f), of
each face f of S1; (2) the vectors point outwards and are normal to
the faces; (3) the norm of each vector is proportional to the area of
the face. In order to examine the similarity between two shapes S1

and S2 for the region surrounding face f of S1 we propose to use the
measure d̂(S1, S2, f) given by:

β1(f) =
∑
g

kR (c1(f), c1(g)) 〈n1(f),n1(g)〉 ,

β2(f) =
∑
h

kR (c1(f), c2(h)) 〈n1(f),n2(h)〉 ,

d(S1, S2, f) = |β2(f)− β1(f)| ,

d̂(S1, S2, f) = min
(
d(S1, S2, f)

|β1(f)| , 1

)
, (17)

where kR denotes the Cauchy kernel and is defined as in Eq. (4) with
a scale parameter σR = 2 mm. In Eq. (17), β1(f) corresponds to

the convolution of vector n1(f) with every other vector n1(g) in
S1, while β2(f) corresponds to the convolution of n1(f) with every
vector n2(h) in S2. When S1 is very similar to S2 in the vicinity of
face f , β1(f) and β2(f) are almost equal and d(S1, S2, f) is very
small. On the other hand, when the two shapes are very dissimilar
(orthogonal or far away from each other), β2(f) is very small and
d(S1, S2, f) is relatively large. In order to enable meaningful com-
parisons across different triangular faces and different shapes, we
normalise d(S1, S2, f) by the absolute value of β1(f). We also limit
the maximum value of d̂(S1, S2, f) to unity to ensure the measure
does not blow up when β1(f) is very small.

The overall similarity between two ear shapes is calculated as the
average similarity measure, d̄(S1, S2), given by:

d̄(S1, S2) =
1

F

F∑
f=1

d̂(S1, S2, f) , (18)

where F denotes the total number of faces in shape S1.
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