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ABSTRACT

Shadows often incur uneven illumination to pavement im-
ages, which brings great challenges to image-based pavement
crack detection. Thus, it is desired to remove pavement shad-
ows before detecting pavement cracks. However, due to the
large penumbras cast by trees, light poles, etc., it is difficult
to locate shadows in a pavement image. In this paper, an au-
tomatic pavement shadow removal method is proposed based
on geodesic analysis. First, a geodesic shadow model is used
to partition a pavement shadow into a number of geodesic re-
gions. Then, an optimal background region is selected for
reference by statistic analysis. Finally, a texture-balanced il-
luminance compensation is applied on all geodesic regions
over the image. Experiments demonstrate the effectiveness of
the proposed method.

Index Terms— shadow removal, penumbra area, pave-
ment shadow, crack detection, texture balance

1. INTRODUCTION

Modern road maintenance has a strong demand for automatic
pavement crack detection. In the past ten years, image-based
pavement crack detection and classification has been a re-
search focus in both academia and industry [1, 2, 3]. How-
ever, when pavement images are contaminated by shadows,
many complications arise and undermine the performance of
crack detection methods . This is because, pavement shad-
ows not only destroy the uniform illuminance of pavement
images, but also decrease the contrast of pavement cracks in
the shadow regions. Thus, a shadow removal procedure is
commonly required before detecting the pavement cracks.

In the past two decades, a number of algorithms have been
developed to remove shadow from images [4, 5, 6, 7, 8, 9, 10].
Typically, there are two key steps in shadow removal. One
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(a) (b)
Fig. 1. An example of pavement shadow removal with the
proposed method. (a) A pavement image, (b) the result.

is shadow-region location, and the other is illuminance com-
pensation. To locate the shadow regions, interactive meth-
ods [11, 12, 13, 14, 15, 16] and automatic methods [17, 18,
19, 20, 21] have been studied. In [11], an image was interac-
tively partitioned into the shadow region, non-shadow region
and penumbra, which were fed into a Bayesian network as
priori probability, to seek an optimal compensation in illumi-
nance. In [12], a point was set in advance in the shadow re-
gion and the whole shadow region was obtained through seed
growing. In [14], a shadow stroke was developed to select
the penumbra area with human interaction, similar work was
found in [15]. In [16], interactive graph cut was utilized to
segment the shadow regions from background. While inter-
active methods often fall short in efficiency, machine-learning
based automatic methods have been exploited in [19, 17].

Pavement shadows are difficult to handle owing to the ex-
istence of large penumbra areas, as shown in Fig. 1(a). A
number of methods have been studied to handle the penum-
bra. In [22], the gradient of the shadow boundary was set
to zero, interactively. After shadow removal, a 2D Poisson
algorithm [23] was applied to recover the shadow boundary.
This method assumes a recognizable shadow boundary, which
would lose texture information of the penumbra. To allevi-
ate this problem, image inpainting techniques were employed
in [12] to restore the texture in penumbra. However, the re-
sulting textures cannot avoid to bias from the original. In [24],
the intensity distribution of the shadow was supposed to be a
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curved surface, and the texture in the penumbra area was re-
stored by illuminance compensation which flattens the curved
surface. Similar method was presented in [14]. However,
these two methods require interactions to locate the penum-
bra area, which heavily limits their applications in practice.

In this study, we partition the large penumbra of pave-
ment shadow with a geodesic shadow model. Then, we se-
lect an optimal reference areas for illuminance compensation
by analyzing statistic property of the geodesic regions. In
illuminance compensation, textures and intensities are both
balanced. Moreover, the proposed method processes every
geodesic region, which guarantees an even illuminance over
the whole image.

In the rest of this paper, Section 2 introduces our prior
work on geodesic shadow removal. Section 3 describes the
proposed shadow removal method. Section 4 reports experi-
mental results and Section 5 concludes the paper.

2. GEODESIC SHADOW REMOVAL

The geodesic shadow removal (GSR) algorithm was proposed
in our prior work [25]. In broad engineering practices, GSR
has mostly expressed a great power in handling pavement
shadows. However, it also shows weaknesses in some cases.
In this section, we first briefly overview GSR, and then exam-
ine its weaknesses.

2.1. Geodesic Shadow Removal Algorithm

(a) original image (b) morphology close (c) Gaussian smooth

(d) geodesic leveling (e) shadow regions (f) illum. compensate.

Fig. 2. An illustration to GSR.

GSR consists of four main steps, as illustrated in Fig. 2.
In the following, we introduce each step of them.

i) Morphology close. Note that, cracks often have similar
intensities with shadows, and a morphological close re-
moves the cracks. As a result, in shadow-area estimation,
the cracks will not be counted into the shadows. In Fig. 2,
(a) is a pavement image, and (b) shows the result.

ii) Gaussian smooth. As pavement is featured with strong
grain-like textures, a Gaussian smooth operation will

(a) (b) (c)

Fig. 3. An example to illustrate the weakness of GSR. (a) An
original pavement image. (b) The reference area (in black)
extracted by GSR. (c) Shadow-removal result by GSR.

make shadow-area estimation not be influenced by the
textures. Figure 2(c) shows the smoothed result.

iii) Geodesic leveling. By using a watersheding strat-
egy, the whole smoothed image is partitioned into a
series of geodesic regions in ascending average il-
luminance, i.e., {Gi|i = 1, ..., L, ..., N}. Suppose
S and B be the shadow area and background (non-
shadow area), then S = {Gi|i = 1, 2, . . . , L}, and
B = {Gi|i = L+1, L+2, . . . , N}. In GSR, L is em-
pirically set as L = 7

8N . Example results are shown in
Fig. 2(d) and (e).

iv) Illuminance compensation. After we get the shadow
from the geodesic levels, i.e., Si(=Gi), an illuminance
compensation operation is applied to each shadow level.
Given Ii,j be the intensity of the pixel at (i, j), and I ′i,j
be the illuminance-compensation result, S and B be the
shadow region and the background (non-shadow region),
then each pixel (i, j)∈ S is assigned with a new value
I ′i,j = α · Ii,j + λ. Here α = DB

DS
, and λ = ÎB − α · ÎS .

Note that, DS and DB are the standard deviations of
the intensity in S and B, respectively, ÎS and ÎB are the
average intensities. Figure 2(f) shows the illuminance-
compensation result.

2.2. Weaknesses of GSR
The strong points of GSR lie in that, first, it locates the
shadow regions using a geodesic leveling strategy which well
handles the large penumbra area of pavement shadows. Sec-
ond, in step iv, by introducing a multiplicative factor α to
illuminance compensation, it can increase the contrast of the
shadow regions to the level of the background region, which
leads to a texture-balanced compensation result. Third, it
utilizes a morphological close step to remove cracks and keep
cracks out from geodesic leveling, which preserves cracks in
the shadow-removal results.

One weak point of GSR is found in the selection of the
shadow regions S and the background B in the step iii. To
be specific, first, it is not reliable to separate the shadow and
the non-shadow area by consistently setting L= 7

8N . Second,
it does not always work to take the whole background area,
i.e., the intensity levels from 7

8N to N , as the reference area
for illuminance compensation, especially when there’s over-
illuminance in the identified B. An example is shown in
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Fig. 4. Statistic values on different geodesic levels. (a) A pavement image. (b) Average intensity values (A). (c) Standard
deviation values (D). (d) Intensity span values (H). Note that, the indices of the geodesic levels are displayed on the X axis.

Fig. 3. It can be seen from Fig. 3(b) that, the background
identified by GSR has been suffered from overexposure. It
is improper to take its average intensity and the standard de-
viation as the reference for illuminance compensation. Fig-
ure 3(c) show the final shadow removal result produced by
GSR, which is apparently visually unsatisfactory. Moreover,
the illuminance in the reference area has been left uneven.

3. IMPROVED GEODESIC SHADOW REMOVAL

We propose to improve GSR on two points. One is to select
an optimal reference area for illuminance compensation, the
other is to apply illuminance compensation to the whole im-
age. In this section, we introduce this improved GSR (IGSR).

3.1. Optimal Reference Area Seclection

Once the geoLevel operation is applied, a number of geodesic
levels can be gained. With these geodesic levels, we can get
some statistic information as follows,

Ai = AVE(Gi), Di = DEV(Gi), Hi = SPAN(Gi),

where AVE() and DEV() calculate the average intensity
and the standard deviation of pixels in one geodesic level,
and SPAN() calculates the span of intensity values in one
geodesic level, i.e., (max-min) value. An example is shown
in Fig. 4. We find that, geodesic levels corresponding to
penumbra area generally have larger H values than non-
shadow regions. Therefore, we roughly estimate the shadow
area and the non-shadow area by applying a bi-partitioning
algorithm OTSU on the H values,

{HS ,HB} = OTSU({Hi|i = 1, 2, ..., N}) (1)

where HS is one class with lower H values, which corre-
sponds to the shadow area, and HB is the other class cor-
responds to the non-shadow area. It is desired to produce a
shadow-free image with higher intensity and stronger texture,
thus we select an optimal reference area using Eq. 2,

Go = arg max
Gi

{(Ai ∗ Di)|Hi ∈ HB}. (2)

3.2. Full-level Illuminance Compensation

With an optimal reference area, illuminance compensation
can be conducted on all geodesic levels. Specifically, the pro-
posed IGSR can be summarized in the following steps.
• First, a morphological close is applied to the original im-

age, to keep cracks out from shadow-area evaluation.
• Second, a low-pass Gaussian filter with a radius of 25 pix-

els is used to smooth off the grain-like textures.
• Third, a geodesic leveling is conducted to partition the

smoothed image into a number of geodesic regions. This
is achieved by a watersheding strategy, where the min-
imum number of pixels in each geodesic region is ng .

• Fourth, an optimal reference area is selected from the gen-
erated geodesic regions by using Eq. 2.

• Finally, a texture-balanced illuminance compensation, as
introduced in section 2.1, is performed on every geodesic
region.

Note that, IGSR performs illuminance compensate not
only on shadow area but also on non-shadow area. In this way,
it can reduce the illuminance of areas suffering from overex-
posure to the level of the reference area.

4. EXPERIMENTS AND RESULTS

In this section, first, experiments are conducted to validate
the proposed IGSR, then the IGSR is compared with GSR,
and finally the impact of parameter ng on IGSR is examined.

4.1. Effectiveness of IGSR

We test the performance of IGSR by a section-intensity anal-
ysis. Figure 5 (a) displays an original pavement image with
two section lines Sec. 1 and Sec. 2, in which Sec. 1 crosses
the shadow area. Figure 5 (b-d) are shadow-removal results
by IGSR in three different settings. It can be seen from Fig. 5
that, all the three results have even illuminance. However,
in Fig. 5 (f), the fluctuation of intensity in the shadow area
is smaller than that in the non-shadow area, which simply
demonstrates a lower contrast in the shadow area than in the
non-shadow area. It is because that, illuminance compensa-
tion without texture balancing cannot change the contrast in
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Fig. 5. Comparison of IGSR results under three different
settings. (a) A pavement image with two section lines, i.e.,
Sec.1 and Sec.2. (b) IGSR-texture: IGSR without texture
balancing. (c) IGSR-close: IGSR without morphology close
to preserve the cracks. (d) full IGSR. (e)-(h) show the in-
tensity on Sec.1 in (a) - (d), respectively. (i)-(l) show the
intensity on Sec.2 in (a) - (d), respectively.

shadow areas. While in Fig. 5 (g) and (h), similar severity of
fluctuation can be found over the whole section, which sim-
ply indicates that, the texture-balance illuminance compensa-
tion has enhanced the texture of the shadow area. Note that,
Sec. 2 locates in the non-shadow area, crossing a crack point
P . It can be seen from Fig. 5 (i-l) that, the intensity val-
ues of P in (i), (j) and (l) stand nearly the same, exactly 23,
25, and 22, which are much lower than that in (k) - a value
of 52. It indicates that, without a morphological close, the
cracks will be counted into the shadow area, who will then
be added with a high intensity value in illuminance compen-
sation. Consequently, the contrast of cracks will be reduced
in shadow removal. In summary, the proposed IGSR, i.e.,
full IGSR, can gain a balanced texture while removing the
pavement shadows, and the manipulative factor α is useful to
achieve a texture-balanced illuminance compensation, and the
morphology close is a necessary step to preserve the cracks.

4.2. IGSR v.s. GSR
Comparisons between IGSR and GSR have been made on a
set of pavement images. Two sample images are shown in
the left column of Fig. 6, which are suffered from overexpo-
sure. It can be seen from Fig. 6 that, shadow-removal results
from GSR show an over-bright illuminance, where the illumi-
nance is uneven. However, the results from IGSR hold even-
illuminance over the whole image. It is because that, an opti-
mal reference area has been selected by IGSR for illuminance
compensation, and the compensation has been performed on
all the geodesic levels in the image.

Fig. 6. Comparison of GSR and IGSR. Column 1: two origi-
nal images. Column 2: GSR results. Column 3: IGSR results.

(a) ng=2000 (b) ng=5000 (c) ng=8000 (d) ng=11000

(e) ng=2000 (f) ng=5000 (g) ng=8000 (h) ng=11000

Fig. 7. The impact of ng on the geodesic leveling and shadow
removal. Row 1: geodesic leveling results. Row 2: the corre-
sponding shadow-removal results.

4.3. Impact of parameter ng

Experiments are also conducted to analyze the impact of ng

on the IGSR result. An illustrative example is shown in Fig. 7,
where ng is tuned from 2000 to 11000, at an interval of 3000.
It can be seen from Fig. 7 that, when ng is tuned from 5000,
8000 to 11000, the intensity jumps between neighboring
geodesic regions are increasingly obvious. This is because
the geodesic leveling with a larger ng will partition a wider
penumbra annulus into one geodesic region. As the intensity
in the penumbra often changes quickly from the shadow cen-
ter to the background, the average intensity of one geodesic
region will significantly bias from that of its neighboring re-
gions. As a result, the illuminance compensation will bring a
intensity jump between two neighboring geodesic regions.

5. CONCLUSION

In this work, an improved geodesic-based shadow removal
method (IGSR) was proposed to remove pavement shadows.
IGRS selected an optimal reference area by analyzing the
statistic property of geodesic levels and performed illumi-
nance compensation over all geodesic levels. Experiments
demonstrated the superior of IGSR over GSR in handling
pavement images suffering from overexposure.
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