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ABSTRACT

Face hallucination (FH) based on sparse representation (S-
R) and locality-constrained representation (LCR) gives rea-
sonably good performance. However, neither SR- nor LCR-
based methods make full use of the structure information in
the training data. On the other hand, low-rank representation
(LRR) has been utilized to cluster samples into their respec-
tive classes by exploiting low-rank structures of the data. In
this paper, we propose a locality-constrained low-rank repre-
sentation (LCLRR) method to take advantage of both LCR
and LRR for FH. LCLRR first enforces a low-rank constraint
on choosing the dictionary atoms that belong to a subspace
that correspond to the same cluster, it then imposes a locality
constraint on selecting atoms that are in the vicinity of test
samples. Experiments show that LCLRR outperforms both
SR- and LCR-based methods on subjectively and objectively,
proving that exploiting the structure information in the train-
ing data is feasible in face hallucination.

Index Terms— Face Hallucination, Low-rank Repre-
sentation, Locality-constrained Representation,Alternating
Direction Method of Multiplier

1. INTRODUCTION

Face hallucination (FH), which is also called face super-
resolution, has been widely used in many applications. In-
spired by the pioneering work of Baker [1], various learning-
based face hallucination methods have been proposed to infer
the missing information by the help of training data. Wang [2]
et al. utilized principal component analysis (PCA) to explore
a prior information from training samples by transferring LR
features into HR ones. Chang [3] et al. first introduced mani-
fold learning into super-resolution algorithm by locally linear
embedding (LLE). Manifold embedding assumes that each
input image can be represented by a weighted sum of cer-
tain dictionary atoms. This simple assumption leads to easy
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computation and often yields good results in super-resolution
scenarios.

Ma et al. [4] proposed a position-patch based FH us-
ing all patches from the same position in a dictionary, and
used a least squares representation (LSR) to obtain the re-
construction weights. Furthermore, in order to solve the
over-fitting problem, sparse representation (SR) constraints
[5] are embedded into manifold pursuit by adaptively se-
lecting dictionary atoms. However, sparse constraints favor
sparsity more than locality in the feature space, which often
leads to unsmooth solutions. Recently, the idea of locality-
constrained representation (LCR) [6] has been proposed to
give more promising results for manifold based FH. The lo-
cal manifold distance is used to determine weights on the
representation coefficients by following the observation that
nearer neighborhoods make greater contributions to the final
reconstruction. Wang at el. [7] used l2- or l1-norm adaptive
regularization on the representation coefficients.

Although the above approaches consider linear subspace,
they ignore an important fact that patches form different class-
es may lie in independent linear subspaces. Structured con-
straints on these independent subspace should have low rank.
Recently, low-rank representation (LRR) has been used for
unsupervised subspace clustering [8, 9]. In [10, 11], low-rank
representation was employed to exploit the structure of data
by clustering the test signal into the most suitable independent
subspace, achieving promising result in recognition tasks. We
make the assumption that patches from different clusters be-
long to independent linear subspaces of low rank. The best
way to utilize the structure information is to enforce the dic-
tionary atoms from the same class with more discriminative
ability.

In this paper, we propose a novel approach called locality-
constraint low-rank representation (LCLRR) to cluster the in-
put to its potential low-rank subspace and represent it based
on LCR with samples from the same subspace. LRR assumes
that different subspaces correspond to different patch cluster-
s, consequently, the input patches are reconstructed by atoms
belonging to just one cluster instead of a mixture of clusters.
This leads to a boost in reconstruction performance in super-
resolution, as shown in Fig. 1. Furthermore the reason why
LCLRR works better than LCR and SR is because it has a
different dictionary atom selection mechanism. Whereas L-
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CR and SR may choose samples from different classes (SR
favors sparsity and do not care about the cluster information,
and LCR emphasize the closest atoms in the subspace), L-
CLRR considers both locality manifold structure and cluster
constraints, with atoms from the same subspace and the near-
est to the input contributing more to the reconstruction. Our
experimental results confirm that low-rank constraints indeed
boost the super-resolution performance.

Fig. 1. Illustration of why LCLRR works superior to SR and
LCR. Different colors denote atoms from different clusters.
LCLRR chooses dictionary atoms from same clusters that lie
closest to input testing sample.

2. RELATED WORKS

2.1. Position based FH by SR

DefiningHn as the HR training face images, n = 1, 2, . . . , N .
N is the number of training samples.for each image, we di-
vided it into small overlapped patch set {Hn(i, j)|1 ≤ i ≤
U, 1 ≤ j ≤ V }. U and V are patch number in column and
row respectively, term (i, j) indicates the position location.
Corresponding, we down-sample and blur the HR dataset
to form the LR training dataset {Ln(i, j)}. For each posi-
tion (i, j) we have input patch and LR HR dictionaries as
y(i, j) ∈ Rd×1,H(i, j) ∈ <t2d×N ,L(i, j) ∈ Rd×N . d is the
square of patch size, t is amplification factor. SR based FH
uses patches from all training samples as dictionary in same
position to represent input patch y(i, j) . The embedding
weights will be calculated by follows:

arg min
α(i,j)

‖y (i, j)− L (i, j)α(i, j)‖2 + λ‖α (i, j)‖0 (1)

Here,‖•‖0is l0-norm and can be replaced by l1-norm in opti-
mization. λis balance parameter, α(i, j) ∈ RN×1 is a vector

denotes the LR representation weights for certain position in-
put patch. Given input LR patch y(i, j), the purpose of FH
is to infer HR patch x(i, j) then integrate all position patches
to form the HR output X . Based on manifold consistency as-
sumption, we calculate HR patch by x(i, j) = H(i, j)α(i, j)
, thus integrate all position patches to output HR X .

2.2. Locality-constrained Representation

Different from SR, LCR introduces a manifold regularization
on optimization. Because all process is on image patch, so
we can omit position index (i, j). The locality-constrained
objectives function as follows:

arg min
α
‖y − Lα‖2 + λ ‖di ⊗ α‖22 s.t.1Tα = 1 (2)

Here,⊗ denotes element wise product, di is the locality adap-
tor that gives different freedom for each basis vector pun-
ished by the similarity to the input patch . Specially,di =

exp(
‖y−li‖22

σ ), li indicates i-th atom in LR dictionary L. σ is
used to adjust the weight decay speed for the locality adaptor.
Fortunately, formula (2) has analytical solution.

2.3. Low-rank Representation

Low-rank representation is widely used in data segmenta-
tion and classification tasks [8, 9]. Generally speaking,low-
rank property of matrix should be thought as intrinsic struc-
ture information without noise. Consider a matrix X =
[x1, x2, . . . , xn] ∈ RM×N , the columns indicate feature
vectors. The objective function as follows:

arg min
Z
‖Z‖∗ s.t. X = DZ (3)

Where, D is the dictionary, ‖•‖∗ denotes nuclear norm which
was used to relax the low-rank optimization to convex prob-
lem. Each Zi provides a representation of the column vector
xi using the columns of the dictionary D. As we wish, the
low-rank constraint on Z will automatically seek the most in-
trinsic subspace for each image.

3. FACE HALLUCINATION VIA LCLRR

As above analysis, LRR do benefit to reveal the intrinsic sub-
space about data structure. Inspired by recent works in face
recognition [10, 11], we introduce low-rank constraint into
manifold learning super-resolution algorithm.

3.1. Algorithm

By low-rank structure, we cluster dictionary atoms with in-
put patch in the same subspace. In this subspace, the origi-
nal input patches will be linear represented by the neighbor-
hood from the same cluster. The ideal is to find a weighted
vector(that indicates a low reconstruction error) elements of
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which when multiplied with the corresponding column of the
dictionary L results in a low rank matrix Ldiag(α) ,and this
matrix can be called as Low-rank Coding. In order to get
the embedding weights, we minimize the following objective
function:

arg min
α
‖y − Lα‖22 + λ‖Ldiag (α)‖∗ + β ‖di ⊗ α‖22 (4)

Here, α is the low-rank constrained coefficient, λ and β are
balance parameters for controlling the contribution from low-
rank and locality constraints, ⊗ denotes element wise prod-
uct. di = exp(

‖y−li‖22
σ ) is the locality adaptor used for mea-

sure the distance between the input patch and each dictionary
atoms. For robustness, we normalize the values of d1 between
0 to1. Nuclear norm in (3) is always used as a convex substi-
tute for rank operation. Matrix Ldiag(α) represents the vec-
tors are used to reconstruct the input patch. Minimizing the
rank of this matrix means that the vector selected for recon-
struct signal y using only those training patches belong to a
low-rank subspace.

3.2. Optimization

Objective function (4) will be solved by alternating direction
method of multiplier(ADMM) by introducing a variable Λ =
Ldiag(α). The formula (4) can be written as:

arg min
α,Λ
||y−Lα||22+λ||Λ||∗+β||di⊗α||22 s.t.Λ = Ldiag(α)

(5)
The above problem can be solved by following augmented
Lagrange function.

arg min
α,Λ
||y − Lα||22 + λ||Λ||∗+β||di ⊗ α||22

+tr(∆T (Ldiag(α)− Λ)) + µ
2 ||Ldiag(α)− Λ||2F

(6)

Where tr(.) is trace operation, ‖•‖F is the Frobenius norm, ∆
is Lagrange multiplier and µ is the penalty parameter, λ and
β are parameters for balance different regularization terms.
The steps of optimization is described in Algorithm1, the first
step is to calculate the low-rank norm by fixed other variables.
Low-rank matrix Λ will be update by follows:

arg min
Λ

λ

µ
||Λ||∗+

1

2
||Λ−(Ldiag(α)+∆/µ)||2F (7)

This formulate can be solved by the singular value threshold-
ing operator as [9]. And the closed form of α in step2 can be
obtained by simple algebraic method.

4. EXPERIMENTAL RESULTS

4.1. Database and Parameter Setting

We conducte simulation experiments on FEI Database [12].
This database contains 400 images which are cropped to

Algorithm 1 ADMM algorithm for LCLRR
Require: y D λ β
Ensure: α

initilization α = 0,∆ = 0,Λ = 0, ρ = 0, µ = 106, ε =
10−8

While not converged do
1: Fix others and update Λ by formulate(7)
2: Fix others and update α by
α = (P + diag(p1)/p2)
P = 2LTL+ 2βdiag(d)⊗ diag(d)
P1 = µ(Λ⊗ L)T 1

p2 = 2LT y + µ(Λ⊗ L)
T

1− (∆⊗ L)
T

1
3: Update Lagrange and penalty parameters

∆← ∆ + µ(Ldiag(α)− Λ)
µ← min(ρµ, µ)

4: Check for convergence
||Ldiag(α)−∆||∞ < ε
end while

120 × 100 pixels, and 360 images are randomly selected to
make up the training set, the rest 40 images are used for test-
ing. In order to evaluate the effectiveness of our algorithm,
we compare our results with some state-of-the-art algorithms
such as LLE [3], LSR [4], SR [5], LCR [6]. LR images are
smoothed by an average filter and down-sampled by a factor
of 4, than the size of LR images is 30×25 pixels according to
HR images. For fairly comparison, we set the parameters for
their best performance from their papers for the other meth-
ods. We set HR patch size to 12× 12 pixels with overlapped
4 pixels, and corresponding LR patch size as 3 × 3 pixels
with overlapped 1 pixel. For Chang ’s neighbor embedding
method, the number of neighbors is set to 100. For Jung
’s SR method, error tolerance is set to 1.0 during seeking
sparse optimal solution. For Jiang ’s LCR method, balance
parameter is set to 0.04 as in the paper for best performance.
In our method, we set HR and LR resolution and overlapped
pixels same as above patch-based methods, thus we fine tune
the low-rank and locality balance parameters λ = 0.1 and
β=0.004.

4.2. Experimental results

As usual, we adopt the same assessment method such as Peak
signal-to-noise ratio (PSNR) and Structural similarity (SSIM)
to measure the objective and subjective quality of the recon-
structed images with other algorithms. As shown in Fig.2,
we list four facial images for comparing the subjective qual-
ity of each algorithm. From the Fig.2, we can find that our
method is better than other methods in subjective quality (en-
larger image for easy observation). LLE method suffered by
under-fitting, the reconstructed facial image has blur effects
in details of mouth and eyes. LSR method thus suffered by
over-fitting and also not enough detail about facial location.
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Fig. 2. Comparison of results based on differen-
t method.(a)Input LR faces. (b)LLE[3]. (c)LSR[4]. (d)SR[5].
(e)LCR[6].(f)our method. (g)Original HR faces.

SR and LCR methods have similar subjective performance,
thus our method yields more detail in mouth and eyes region-
s, and are more identical with original images. Furthermore,
in Fig.3, PSNR and SSIM of all 40 testing images are listed.
we can see that our method has better PSNR and SSIM values
than other methods. The average PSNR(SSIM) of our method
is 1.26 db(0.0248) higher than that of the LLE method, 1.12 d-
b(0.0159) higher than the LSR method, 0.91 db(0.0142) high-
er than that of the SR method, and 0.38db(0.0078) higher than
that of the LCR method. Therefore, we can conclude that our
method has better performance both in objective and subjec-
tive rather than some state-of-the-art algorithms.

Fig. 3. Comparisons of PSNR and SSIM for differen-
t methods.The average of PSNR and SSIM of differen-
t methods: LLE [3](PSNR=31.75, SSIM=0.8945), LSR
[4](PSNR=31.90, SSIM=0.9034), SR [5](PSNR=32.11, S-
SIM=0.9051), LCR [6](PSNR=32.63, SSIM=0.9115), the
proposed LCLRR method(PSNR=33.02, SSIM=0.9193).

Fig. 4. A cluster contains top 10 similarity images are listed.
Red number is index of samples.

4.3. The role of Low-rank representation

In order to test the role of LRR in the proposed algorithm, we
take a simple test on how different algorithms to choose suit-
able dictionary atoms to reconstruct the input image. We set
the first test facial image as input image, then we use k-means
clustering algorithm to cluster all the training samples to form
a cluster, because we use facial image as dictionary atoms di-
rectly, so the representation coefficients can index which im-
age will be selected. As shown in Fig.4, 10 facial images(with
most similarity to input image) which assumed into a cluster,
the red number is index of the samples. As shown in Fig.5.

Fig. 5. The weights vector of input image. The nonzero ele-
ments indicate the selected atoms

We list the weights vector for three different algorithms, in or-
der to observe, we cut down many small weights for focusing
which atoms will be chosen, we can find that the SR method
can select 6 neighbors from the cluster, the LCR can selec-
t 7 neighbors from the cluster, and our method can select 9
neighbors from the cluster. Therefore, LRR plays reasonable
role in clustering dictionary atoms while coding, thus LCR
method can also be treated as a special case of our method.

5. CONCLUSION

In this paper, we propose a low-rank representation based face
hallucination algorithm. Rather than only focus on the local-
ity manifold regularization on representation, we take both
advantage of low-rank and locality constraints on represen-
tation, enforcing to choose the dictionary atoms from same
cluster with input signal and considering the locality mani-
fold distance. Experimental results shown our method have
both better subjective and objective quality than some state-
of-the art algorithms. Nonetheless, in future, we will focus on
how to improve the robustness for input noise with low-rank
representation method.
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