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ABSTRACT

Redundant-transform-based image fusion approaches require a lot
of memory and computations. This paper proposes an effective and
efficient multi-focus image fusion technique in dual domain using a
redundant transform. The proposed scheme captures high-frequency
informations, e.g. edges and slant textures, of images efficiently,
and reduce the computational cost. The proposed scheme extracts
the high-frequency information of images with multiple directional
lapped orthogonal transforms (M-DirLOTs) through the following
procedure: (1) reconstruct the detail image using high-pass sub-
bands, (2) execute a fusion operation in spatial domain through joint
measurement and (3) improve the performance by mathematical
morphology processing. The proposed method overcomes some dis-
advantages of traditional transform-based and spatial-based fusion
techniques. Experimental results show that the proposed method is
able to significantly improve the fusion performance.

Index Terms— Dual domain, Image fusion, M-DirLOTs, Slant
texture, Joint measurement, Mathematical morphology

1. INTRODUCTION

It is difficult to clearly acquire all objects in the same scene, be-
cause the focused range of visible imaging system is limited. A
well-focused image is comparatively clear while a defocused image
is blur. Image fusion is a scheme to improve the quality of informa-
tion from a set of images by combining relevant information from
multiple images into a single image. The fused image will be more
informative than any of the original images. Obtaining a focused
image is an essential task for human perception and machine vision.
Image fusion is a good approach to acquire a well-focused image
for providing reliable and accurate information by combining multi-
sensor data [1]. It is basically realized by combining well-focused
clear parts of multiple source images.

In the pixel-based fusion, the pixels are fused by selecting ei-
ther value on corresponding position or weighted average of multi-
ple pixels. Attributions for the fusion commonly include the average
value, standard deviation and energy etc. So far, various approaches
of multi-focused image fusion have been developed [2] − [5]. Some
approaches select pixels from clear parts of source images in the spa-
tial domain or feature domain to compose a sharp image [2], [3], [4].
These approachs, however, require edge and texture detection and
the detection has great influence on the quality of image fusion. Gen-
erally, fusion algorithms take the single pixel or pixels in a local re-
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gion into account. This approach, however, could lead image degra-
dation to the result, e.g. reduced contrast and blocking artifacts, and
hardly depends on the adopted algorithm.

Another approach of image fusion combines coefficients of a
multi-scale transform under a premise that the detailed information
of image is distributed in high frequency subbands. This transform-
based approach is called coefficient-based fusion. Compared with
the pixel-based method, the coefficient-based one can preserve more
detail information of the source images. The basic steps of the pro-
cedure are as follows: Firstly, analyze every image using a discrete
wavelet transform (DWT) decomposition. Secondly, fuse individual
subband, where different fusion algorithms are used. Thirdly, recon-
struct a picture using an inverse DWT.

The discrete cosine transform (DCT), Curvelet and Contourlet
can also be used as the transform. Images are effectively decom-
posed into approximation and detail coefficients. However, these
transforms have some disadvantages. The traditional separable
transforms have limited directional characteristics. Curvelet has a
question how to construct a tight curvelet-like transform in discrete
domain. Contourlet causes pseudo-Gibbs phenomena easily. In
order to overcome these problems, some new constructions such as
dual-tree complex wavelet transform (DT-CWT), non-subsampled
contourlet transform (NSCT) and non-subsampled shearlet trans-
form (NSST) were proposed [6], [7], [8]. 2-D DT-CWT has six
subbands that give directional information of an image, where the
angles are set to ±15,±45,±75 degrees. The construction is based
on real 1-D two-channel filter banks, and thus the design and imple-
mentation are not complicated. However, the structure is somehow
restrictive. NSCT and NSST can capture two-dimensional geomet-
rical structure much more effectively than traditional multi-scale
transforms. There, however, remains a disadvantage that NSCT and
NSST cannot satisfy orthogonality, and the computational complex-
ities and redundancy are high.

For more effective representation of images, we proposed a new
transform, M-DirLOTs, which is a union of directional filter banks
that can represent slant contours, textures and gradation with few
coefficients [9]. M-DirLOTs can represent edges and other singular-
ities along trend surfaces efficiently [5], [10]. Remind that the per-
formances of spatial domain fusions were restricted by an adopted
detail information detection algorithm. As well, traditional fusion
methods in redundant transform domain need high computational
costs. The computational cost is proportional to the redundancy.

In order to improve the fusion performance, we propose an effec-
tive image fusion method based on M-DirLOTs and joint measure-
ment in dual domain. Although fusion of two images is illustrated
in this paper, it is not hard to be extended for multiple images by
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Fig. 1: Examples of atomic images of M-DirLOTs.

analogy. The following is the structure of this paper. A brief intro-
duction of M-DirLOTs is given in Section II. In Section III, we will
propose an efficient image fusion method. The experimental results
and discussion are presented in Section IV in order to verify the sig-
nificance of the proposed method. Finally, Section V concludes this
paper.

2. REVIEW OF MULTIPLE DIRLOTS

M-DirLOTs provide multi-scale and multi-directional decomposi-
tion. We use M-DirLOTs to analyze an image, which can acquire ge-
ometrical features of images and provide significant high-frequency
information.

A single DirLOT is able to simultaneously satisfy the following
three properties: orthogonality, symmetry, and overlapping property
with a non-separable basis. This transform can be constructed with a
lattice structure [11]. In addition, DirLOT can also satisfy the fixed-
critically-subsampling, real-valued, and compact-support properties.
Furthermore, it can hold the trend vanishing moments (TVMs) for
any direction. The directional property works well for slant textures
and edges.

Aiming at expressing the oblique textures and edges in various
directions better, we define a dictionary D by multiple DirLOTs as

D = [ΨT
ϕ0
ΨT
ϕ1
ΨT
ϕ2
ΨT
ϕ3
...ΨT

ϕR−1
]T ,

where Ψϕ0 is a nondirectional isotropic symmetric orthonormal
DWT (ISOWT) with the classical two-order vanishing moments
(VMs), and Ψϕk is a directional anisotropic symmetric orthonor-
mal wavelet transforms constructed by DirLOTs with the two-order
TVMs for the direction ϕk. R corresponds to the redundancy. Fig.1
shows examples of single-level atomic images in D, which con-
structs a normalized tight frame and satisfy

DT D =
R−1∑
k=0

ΨT
ϕk
Ψϕk = RI.

A heuristic approach takes the average of results obtained by
independent reconstruction with Ψϕk for k = 0, 1, · · ·, R − 1. It is
simply realized by

x̂A =
1
R

DT cA =
1
R

R−1∑
k=0

ΨT
ϕk
Θ(Ψϕk xA),

where xA and x̂A are vector representations of input image A and
reconstructed image Â, respectively. Θ(·) is an operation for the
coefficients. In this paper, M-DirLOTs of polyphase order Ny =

Nx = 4 were adopted. The atom size is 10 × 10. The TVM angles
ϕ1, ϕ2, ϕ3 and ϕ4 were set to − π6 ,

π
6 ,

2π
6 and 4π

6 , respectively.

3. PROPOSED IMAGE FUSION METHOD

In [5], a fusion method based on M-DirLOTs and sum-modified-
Laplacian was introduced. The fusion processing was implemented
in M-DirLOTs domain. When the redundancy of M-DirLOTs is set
to R, the fusing attributions are calculated for R times. In order to
reduce the computational cost and obtain effective high-frequency
information, we propose to use M-DirLOTs to analyze input images
(A and B), and reconstruct detail images (AH and BH) with high-
frequency subbands. Consequently, the approximation images AL =

A − AH and BL = B − BH are computed. The fusion operation will
be performed in spatial domain. The computational cost for fusion
of detail images in Sec3.1.2 can be significantly reduced.

3.1. Spatial Domain Fusion based on Joint Measurement

A classical fusion rule takes an average of low-frequency coeffi-
cients and selects absolute maximum of high-frequency coefficients
in DWT domain [12]. We propose to apply this DWT domain rule
to the spatial domain. That is, the fusion rules are directory used for
the approximation and detail images instead of subband coefficients.

3.1.1. Fusion of Approximation Images

The fusion rule takes average of approximation images. The fusion
rule among the pixels is represented by

FL =
1
2

(AL + BL), (1)

where FL denotes an approximation of the fusion image.

3.1.2. Fusion of Detail Images

Salient features of a given image, such as edges, appear as large
absolute values of high-frequency informations. Thus, we adopt a
fusion rule to extract maximum absolute value of the corresponding
pixel of high-frequency informations. In [13], spatial frequency (de-
noted as S ) was used as a sharpness measurement which evaluates
the variation of pixel values. It can be represented by

S H
A =

√
(S W,H

A )2 + (S E,H
A )2, (2)

where
√· and (·)2 denote an element-wise square root and squared

operation, S W,H
A and S E,H

A are the row frequency

S W,H
A =

√√√
1

MN

P∑
m=−P

Q∑
n=−Q+1

[AH(m, n) − AH(m, n − 1)]2

and column frequency

S E,H
A =

√√√
1

MN

P∑
m=−P+1

Q∑
n=−Q

[AH(m, n) − AH(m − 1, n)]2,
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Fig. 2: Multi-focus source images.

respectively. The parameters P and Q set the window size (2P+1)×
(2Q + 1), which are used to compute the S W and S E . In this paper,
the size is set to (2P + 1) × (2Q + 1) = 3 × 3. In the same manner,
S H

B is calculated.
Respecting the above mentioned facts, two metrics in (1) and (2)

have different features. Hence, we propose a combination metric to
improve the fusion performance. Considering the human visual con-
trast (e.g. sensitivity to local contrast change, edges, and directional
features), the local luminance contrast was developed [14]. Mean-
while, Gaussian low-pass filter (denoted as G) of size 3 × 3 is used
to provide good characterization of the high-frequency information.
We define, the fusion-map-based joint measurement as follows:

map(i, j) =

1, if G(
S H

A ·abs(AH )

(ĀL)2(1+α) )(i, j) ≥ G(
S H

B ·abs(BH )

(B̄L)2(1+α) )(i, j)

0, otherwise
,

where ĀL and B̄L are the mean coefficients of approximation images
for each pixel in 3×3 windows. α is a visual constant, which is set by
perceptual experiment, ranging from 0.6 to 0.7 [15]. The standard
deviation of G is set to 5 from experience. The detail image of fused
image is constructed by

FH = map · AH + (1 −map) · BH .

3.2. Refinement of Focused Region Detection

In [16], a detection of focused regions was presented. The procedure
is as follows:

1. Fuse FL and FH to get an initial fused image.
2. Calculate the RMSE (root mean square error) of each pixel

within a local area (7×7) between the source images and the initial
fused image.

3. Compare RMSEA(i, j) and RMSEB(i, j) to determine fusion
map Z (logical matrix), where ‘1’ in Z indicates the pixel at position
(i, j) in image A is fused, i.e., RMSEA(i, j) ≤ RMSEB(i, j), and ‘0’

Fig. 3: “Pepsi” fused images of different methods. (a)-(d) are the
difference images between fused images and Fig.2(a1), where Li’s
method, Bai’s method, Liu’s method and proposed method, respec-
tively.

indicates the pixel in B is fused.
4. Morphological opening (Z ◦ B) and closing (Z • B) with small

structural element are used to optimize Z (thin connections, thin pro-
trusions, narrow breaks, fill long thin gulfs). Meanwhile, a threshold
Tth is set to remove the holes smaller than the threshold. The struc-
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Fig. 4: “Disk” fused images of different methods. (a)-(d) are the difference images between fused images and Fig.2(b1), where Li’s method,
Bai’s method, Liu’s method and proposed method, respectively.

Fig. 5: “Lab” fused images of different methods. (a)-(d) are the difference images between fused images and Fig.2(c1), where Li’s method,
Bai’s method, Liu’s method and proposed method, respectively.

Table 1: Comparison of MI and QAB/F among four methods

Method MI QAB/F

Pepsi(512 × 512) Disk(480 × 640) Lab(480 × 640) Pepsi(512 × 512) Disk(480 × 640) Lab(480 × 640)
Li’s method[2] 7.3762 7.0630 7.9109 0.7940 0.7243 0.7505

Bai’s method[3] 8.8769 8.3003 8.6841 0.7920 0.7385 0.7589
Liu’s method[4] 8.6289 8.2165 8.5201 0.7885 0.7364 0.7585

Proposal 8.9189 8.2885 8.8292 0.7943 0.7388 0.7591

tural element B is a 5×5 matrix with logical 1’s and Tth is set accord-
ing to the experimental results. The resulting logical matrix denoted
as Z′. Morphological operations are again performed to smooth ob-
ject contours [17].

5. The final image F is restored by map Z′.

The final fused image can be described by

F = Z′ · A + (1 − Z′) · B.

4. EXPERIMENTAL RESULTS

In order to confirm the effectiveness of the proposed image fusion
method, some experiments were conducted. In these experiments,
the number of hierarchical levels is set to five. “Pepsi”, “Disk”
and “Lab” were used. Fig.2 shows multi-focus source images. The
Li’s[2], Bai’s[3] and Liu’s[4] methods were used as references, and
three algorithms were implemented using MATLAB programs pro-
vided by their authors.

We use mutual information (MI) and QAB/F as information mea-
sures for evaluating image fusion performance were used. MI repre-
sents how much of the information in the fused image was obtained
from the input images [18]. QAB/F uses Sobel edge detection to mea-
sure how much edge information in the fused image can be obtained

from the source images [19].
Figs.3-5 show the experimental results. It can be seen that the

proposed method shows better quality for edges and slant textures
compared with the results of Li’s, Bai’s and Liu’s method. Table 1
compares the MI performances and QAB/F metric among four meth-
ods. We can see that the proposed method outperforms the other
methods except the case that the MI of “Disk”.

The experimental results imply that proposed method are not
only able to reproduce the structure appropriately, but also gener-
ate good results. By introducing directional decomposition into the
transform, M-DirLOTs can efficiently obtain diagonal components
present in natural images. The directional property works well for
edges and slant textures.

5. CONCLUSIONS

Image fusion methods based on DWT for multi-focus images were
reviewed. It was pointed out that the representation of geometric
structures is relatively insufficient by using traditional transform. In
order to solve this problem, M-DirLOTs was introduced to improve
the image fusion quality for edges and textures. Meanwhile, the new
framwork was applied to reduce computational cost. Experimental
results show the imaging fused performance was improved, and their
effectiveness has been verified.
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