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ABSTRACT
Restoring underwater image from a single image is know to
be ill-posed, and some assumptions made in previous meth-
ods are not suitable for many situations. In this paper, we pro-
pose a method based on blue-green channels dehazing and red
channel correction for underwater image restoration. First-
ly, blue-green channels are recovered via dehazing algorith-
m based on an extension and modification of Dark Channel
Prior algorithm. Then, red channel is corrected following
the Gray-World assumption theory. Finally, in order to re-
solve the problem which some recovered image regions may
look too dim or too bright, an adaptive exposure map is built.
Qualitative analysis demonstrates that our method significant-
ly improves visibility and contrast, and reduces the effects of
light absorption and scattering. For quantitative analysis, our
results obtain best values in terms of entropy, local feature
points and average gradient, which outperform three existing
physical model available methods.

Index Terms— Underwater image restoration, image de-
hazing, image enhancement, visibility recovery

1. INTRODUCTION

Since the mysterious underwater world contains abundant
resources, the study of underwater image enhancement and
restoration is meaningful, and thus desired in both consumer
photography and computer vision applications. However,
capturing clear underwater images is challenging due to phys-
ical properties of the underwater environment. The effects of
absorption and scattering as well as the varying attenuation
of light in different wavelengths cause the degradation of
underwater images. Therefore, single underwater image en-
hancement and restoration have become a hot spot of research
given its wider application range.

An underwater image can be represented as a linear su-
perposition of a direct component, a forward scattering com-
ponent and a back scattering component [1]. Such a forward
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scattering causes blurring of the image features while the back
scattering masks the details of the scenario. As shown in Fig.
1, the light intensity decreases with the distance from objects
in water by light attenuation depending on the wavelength of
light [2]. Such a varying attenuation of light in different wave-
lengths causes color casts. The overall poor visibility caused
by the above-discussed effects limits to the applications of
underwater images, such as marine biology and archaeology
[3], marine ecological research [4] and aquatic robot inspec-
tion [5].

Fig. 1. Light intensity in water.

Numerous approaches are proposed to process the degrad-
ed underwater images and can be described from two differ-
ent perspectives. One is based on image restoration technique.
Trucco and Olmos [6] devised a self-tuning image restora-
tion filter based on a simplified version of Jaffe [7] and M-
cGlamery [8] underwater imaging formation model. Optimal
filter parameter are estimated by optimizing a quality criteri-
on based on a global contrast measure. Carlevaris et al. [9]
proposed a simple prior that exploits the strong difference in
attenuation among the three color channels of an underwa-
ter image in water to estimate the depth of the scene. As
a result, the effects of light scattering in underwater images
can be removed. Yang et al. [10] proposed an efficient and
low complexity underwater image restoration method based
on the Dark Channel Prior algorithm [11]. The median filter
is used to estimate the depth map of image instead of the soft
matting procedure. Moreover, a color correction algorithm is
adopted to enhance the color contrast of underwater images.
Chiang and Chen [12] restored underwater images by com-
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bining a dehazing algorithm with wavelength compensation.
The haze effects from color scatter are removed by the Dark
Channel Prior algorithm [11]. According to the amount of
attenuation of each wavelength, reverse compensation is con-
ducted to restore the distortion from color casts. Galdran et al.
[13] proposed a Red Channel method, where color associat-
ed with short wavelength is recovered and leads to a recovery
of the lost contrast. In sum, the image restoration technique
can remove the haze in underwater images to some extent.
However, those techniques are limited by the accuracy of the
assumption, optical model and estimated parameters.

Another kind of technique is based on image enhance-
ment. Ancuti et al. [14] proposed a novel strategy to enhance
visual quality of underwater images and videos based on the
fusion principles. Chani and Isa [15] improved the contrast
and reduced the noise of underwater images through integrat-
ed color model with Rayleigh distribution. Li and Guo [16]
proposed an underwater image enhancement method based
on dehazing and color correction. However, underwater im-
age enhancement technique usually produces under-enhanced
or over-enhanced regions because this kind of technique is not
based on the underwater imaging model.

2. RELATION TO PRIOR WORK

According to the selective absorption theory of water, the red
light is much easier to be absorbed than the blue light and the
green light. Moreover, scattering intensity is inversely pro-
portional to the fourth power of wavelength according to the
Rayleigh scattering theory. The shorter wavelengths of the
green light and the blue light will scatter much more than the
longer wavelength of the red light [17]. Therefore, we can as-
sume that the attenuation of the red light only results from ab-
sorption while the attenuation of the blue light and the green
light only result from scattering. Unlike previous underwa-
ter image restoration works which apply original Dark Chan-
nel Prior algorithm to restore RGB three color channels with
the same equation, we recover underwater images by blue-
green channels dehazing and red channel correction. The
blue-green channels are recovered using a dehazing algorithm
based on an extension and modification of the Dark Channel
Prior algorithm. Then, the red channel is corrected following
the Gray-World assumption theory. In order to resolve the
problem which some recovered image regions may look too
dim or too bright, an adaptive exposure map is built for better
visual quality. Fig. 2 shows the flow of the proposed method.

The rest of the paper is organized as follows: Section 3
describes our method. Section 4 evaluates and compares ex-
perimental results. Section 5 concludes the paper.

Fig. 2. Flowchart of the proposed method.

3. OUR METHOD

3.1. Blue-Green Channels Dehazing

As discussed above, the attenuation of the blue-green chan-
nels only results from scattering, which is similar to the hazy
images [18]. Hence, we process the blue-green channels of
an underwater image via a dehazing algorithm based on the
remarkable progress on single image dehazing theory. The
underwater imaging model can be described as:

Ic(x) = Jc(x)t(x) +Bc(1− t(x)), c ∈ {g, b}, (1)

where x denotes a pixel, I(x) is the observed image, J(x) is the
restored image, B is the background light, and t(x)∈ [0,1] is
the medium transmission map which represents the percent-
age of the scene radiance reaching the camera. The purpose
of dehazing is to recover Jc(x), Bc and t(x) from Ic (x).

The background light B can be estimated based on the fac-
t that red channel attenuates much faster than green and blue
channels in an underwater image. To determine the differ-
ences among the three color channels, the maximum intensity
of the red channel and that of the maximum one of the green
and blue channels are compared as:

D(x) = max
x∈Ω,c∈r

Ic(x)− max
x∈Ω,c∈{g,b}

Ic(x), (2)

where D(x) denotes the largest differences among three dif-
ferent color channels, Ic (x) refers to a pixel x in the observed
image, and Ω is a local patch in the image. The background
light can be estimated as follows:

Bc = avg(Ic(argmin
x

D(x))), c ∈ {g, b}. (3)
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According to the Rayleigh scattering theory, the attenuat-
ing of the blue light and the green light is the same in water.
Thus, we assume the medium transmissions map of the blue
and green channels are identical. Furthermore, we also as-
sume that the medium transmissions map in a local patch is
constant. The Eq. (1) is rearranged and taken the minimum
operation in a local patch:

min
c

(min
x∈Ω

(
Ic(x)

Bc
)) = t(x)min

c
(min
x∈Ω

(
Jc(x)

Bc
)+1− t(x), (4)

The first term on the right side of the Eq. (4) should tend to
be zero based on the Dark Channel Prior theory. Thus, the
medium transmission map of the green and blue channels can
be written as:

t(x) = 1− min
c∈{g,b}

(min
x∈Ω

(
Ic(x)

Bc
)). (5)

As shown in Fig. 3(b), there are some halos and block ar-
tifacts in the map t(x). The halos and block artifacts are pro-
duced because t(x) is calculated over an image patch, which
produces a coarse initial estimate of the map. To address the
problem, the guided filter [19] is applied to refine the coarse
map. Fig. 3(c) displays the refined medium transmission map.

(a) (b) (c)

Fig. 3. Medium transmission map. (a) Original underwater
images with a size 600×400. (b) Coarse medium transmis-
sion maps. (c) Refined medium transmission maps.

With the refined medium transmission map and the ob-
tained background light, we can restore the haze-free green
and blue channels according to the Eq. (1). Specifically, the
haze-free channel can be restored by:

Jc(x) =
Ic(x)−Bc

tc(x)
+Bc, c ∈ {g, b}, (6)

where Jc(x) represents the restored channel.

3.2. Red Channel Correction

The absorption rate of red light is hard to be obtained for sin-
gle underwater image. Inspired by the Gray-World assump-
tion theory that the average value of object color in an ideal
image is gray, we correct the red channel following the as-
sumption. It can be written as:

(avgRr + avgBr + avgGr)/3 = 0.5, (7)

where avgRr, avgBr and avgGr are the normalized average
values of the recovered red channel, blue channel and green
channel, respectively. The average value of the recovered red
channel can be estimated as follows:

avgRr = 1.5− avgBr − avgGr. (8)

Then, the compensation coefficient δ can be calculated as:

δ = avgRr/avgR, (9)

where avgR is the normalized average value of the original
red channel. The recovered red channel Rrec can be obtained
by:

Rrec = R. ∗ δ, (10)

where R is the normalized original red channel, and δ is the
estimated compensation coefficient. As shown in Fig. 4(b),
after blue-green channels dehazing and red channel correc-
tion processing, clarified visibility, calibrated color casts and
enhanced contrast are achieved.

(a) (b) (c)

Fig. 4. Recovered results. (a) Original underwater images
with a size 600×400. (b) The recovered results without an
adaptive exposure map. (c) The recovered results with an
adaptive exposure map. Red rectangles indicate the details.

3.3. Adaptive Exposure Map Estimation

Based on the observation that the dark or bright regions in
underwater images become too dark or too bright after pro-
cessing by our method, we take an adaptive exposure map
[20] to adjust our results. The adaptive exposure map s(x) can
be obtained by solving optimization problem:

min
s

∑
x

{[1− s(x)
YJ(x)

YI(x)
]2 + λ[s(x)− 1]2}+Φ(s), (11)

where s(x) is the adaptive exposure map, YJ is the illumi-
nation intensity of the restored image, YI is the illumination
intensity of input image, λ = 0.3 is a constant, and Φ(·) is
a smoothness regularization. The optimization problem can
be approximately solved using a two-step approach. First,
solve s(x) without the smoothness regularization, which has a
closed-form solution. Then, apply guided filter GFI [19] to

1733



smooth the solution. Therefore, we can get a fast approximate
solution as:

s(x) = GFI [
YJ(x)YI(x) + λY 2

I(x)

Y 2
J(x) + λY 2

I(x)

]. (12)

The exposed output can be written as:

OutputExp = Jc(x). ∗ s(x), c ∈ {r, g, b}, (13)

where Jc is the restored image and s(x) is the adaptive expo-
sure map. Figure 4(c) shows the results of applying an adap-
tive exposure map.

4. EXPERIMENT RESULTS

In order to assess the performance of the proposed underwa-
ter image restoration method, we compared our method with
three existing methods: Carlevaris et al. [9], Yang et al. [10]
and He et al. [11], which are based on underwater imaging
optical model and dehazing algorithm. The qualitative and
quantitative evaluations are carried out to assess the perfor-
mance of different methods. We just show some examples of
the results owing to the limited space.

4.1. Qualitative result

Figure 5 shows that He’s work has little or no effect on under-
water images due to the distinction between the atmospher-
ic scattering model and the actual underwater optical model.
The method of Carlevaris can remove the haze. However,
the solution of Carlevaris can unveil little details in the fore-
ground. The results of Yang usually contain evident color
casts and artifacts because the assumption of the color cor-
rection is unavailable in some cases. The proposed method
produces aesthetically natural image versions and improved
contrast and details without artifacts.

(a) (b) (c) (d) (e)

Fig. 5. Qualitative comparisons. (a) Original underwater im-
ages with a size 600×400: Image 1, Image 2 and Image 3
from top to bottom. (b) He results. (c) Carlevaris results. (d)
Yang results. (e) Our results.

4.2. Quantitative result

Unlike the common image quality assessment or common im-
age restoration areas, there is no easy way to have a refer-
ence image, which makes underwater images difficult to e-
valuate. We consider the main goal of image restoration as
to emphasize the image features and information content. Ta-
ble 1 shows the comparative values in terms of entropy, SIFT
(Scale-Invariant Feature Transform) local feature points [21]
and the average value of gradient (AVG) for the underwater
images shown in Fig. 5. The value of entropy represents the
valuable information contained in the recovered images. The
SIFT local feature points indicate the global contrast and lo-
cal features while the AVG denotes the contrast and details
changes. The best results are represented by bold face values.

Table 1. Comparison in terms of entropy, SIFT and AVG.
Images Method entropy SIFT AVG
Image1 He 7.3727 198 0.1093

Carlevaris 7.3425 208 0.0851
Yang 7.5179 223 0.0818
Our 7.5801 234 0.1139

Image2 He 5.0047 107 0.0125
Carlevaris 5.4966 135 0.0112

Yang 6.5463 240 0.0236
Our 6.7354 243 0.0253

Image3 He 7.3706 639 0.1067
Carlevaris 7.1155 599 0.0888

Yang 6.8192 470 0.0399
Our 7.4268 642 0.1084

Table 1 shows that the quantitative performance of our
method stands out among the other methods in terms of
entropy, SIFT and AVG. The results demonstrate that our
method can increase the valuable information, global con-
trast, local features and details of the underwater images.

Therefore, the qualitative and quantitative evaluation-
s prove that our method outperforms the three compared
methods and can effectively improve the visual quality of
underwater images.

5. CONCLUSION

An underwater image restoration method is proposed based
on blue-green channels dehazing and red channel correction.
The qualitative and quantitative evaluations show that the pro-
posed method can effectively remove haze, restore natural ap-
pearance and increase contrast, gradient and local features of
underwater images. Moreover, our method outperforms each
of the three existing methods.
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