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ABSTRACT

This paper proposes a rotating coded aperture we called RCA
for depth recovery, complementing the previous depth from
defocus methods in both recovery accuracy and friendliness
for hardware implementation. In the proposed RCA, an opti-
mized coded aperture is rotated around the optical axis, and
multiple images are taken at a few locations of the rotated
aperture. We derive a criterion to evaluate the depth recovery
performance of the RCA. With this criterion, the coded pat-
tern of rotating aperture and the angles of rotations are jointly
optimized by a genetic algorithm combined with a multiscale
refinement strategy. The proposed RCA is demonstrated to
have better depth from defocus performance over other mul-
tiple coded aperture schemes.

Index Terms— computational photography, rotating cod-
ed aperture, depth from defocus

1. INTRODUCTION

Generally, 3D information of a scene consists of texture infor-
mation and depth information. However, depth information
is more difficult to acquire than the photometric information
that can be captured with various matured sensors. There are
mainly two categories of depth acquisition methods: 1) active
methods, including laser scanning, time-of-flight depth mea-
surement, and structured light based sensing, and 2) passive
methods, including stereo matching and depth from defocus
(DFD) [1, 2, 3]. While each approach has its own merits and
drawbacks, depth from defocus techniques are more robust to
occlusion and correspondence difficulty, and are more easy to
be integrated into imaging devices with only moderate modi-
fications [4]. When captured through an optical lens, objects
of different depths to the camera are recorded with different
levels of sharpness due to the out-of-focus blurring. Most of
the modifications to recover depth from defocus require mul-
tiple images or active methods with extra apparatus. It is chal-
lenging to precisely estimate the amount of blur [5, 6]. Coded
apertures have shown superiority in out-of-focus deblurring
over traditional nearly circular apertures [7, 8, 9]. The depth
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recovery performance of DFD has also been improved signif-
icantly by using coded apertures instead of circular ones [10].
Levin et al. [1] designed a coded aperture that is more dis-
criminative for depth sensing, and proposed a depth estima-
tion approach with sparse regularization. In early DFD work,
depth is estimated from a pair of two images captured with
two circular apertures of difference sizes [11, 12, 13]. Howev-
er, the circular shape of aperture pairs makes it difficult to dis-
criminate depth from blurring. Instead of circular apertures,
Zhou et al. [14, 15] propose optimizing coded aperture pairs
for DFD to maximize depth discrimination, significantly en-
hancing depth recovery performance. However, for practical
implementation, it would be problematic since coded aperture
pairs require enough room to switch apertures.

To remedy these issues, this paper proposes a rotating
coded aperture for DFD. In our approach, a coded aperture
is rotated to a few locations around the optical axis, and one
image is taken at each location. Then, depth information is
estimated from the multiple captured images. At the coarsest
scale, the code pattern is first initialized at the solution opti-
mized by a genetic algorithm; then, for each scale, the cod-
ed pattern from the last scale is interpolated and refined by
coordinate decent. The angles of rotations are optimized by
the genetic algorithm with coded pattern. Simulation results
demonstrate the superiority of the proposed rotating aperture
over the previous coded aperture or aperture pairs. The main
contributions of our work are twofold: 1) We propose the
RCA scheme for DFD, which does not only have better depth
recovery performance, but is also more convenient to inte-
grated in commodity camera. The aperture can be rotated
by bridging the aperture to the in-lens electronic focus drive
motor with several small driving gears. 2) We derive the op-
timization of RCA in terms of depth recovery performance,
extending the optimization framework in [14].

2. PROPOSED METHODS

2.1. Criterion for RCA Evaluation

When the rotations are more than three times, the theoretical
derivation process will become very complex and the perfor-
mance of coded aperture cannot get an obvious promotion. In
this paper, we utilize three rotated versions of an aperture and
correspondingly capture three images Fi (i=1,2,3) of the same
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scene with different defocus characteristics or PSFs. This pro-
cess is denoted as

Fi = F0 ·Ki
d +Ni, (1)

where Ki
d represents the Fourier transform of the corre-

sponding PSF with blur size d. F0 means the observed
blurred image in frequency domain, and Ni is Gaussian white
noise. Inspired by the method of computing the optimum
aperture in [14], we propose to solve a maximum a posteriori
(MAP) problem to obtain the size d and then get an esti-
mate of the depth map. The problem can be expressed as the
minimization of an energy function

E(d̂|F1, F2, F3, σ) = min
F0

∑
i=1,2,3

||F̂0 ·Ki
d̂−Fi||2+||C ·F̂0||2 (2)

There are two unknown variables, F̂0 and d̂, in Eq. (2). We
first estimate F̂0 and then use it to calculate d̂ using Wiener
deconvolution. For an initialized d̂, solving ∂E/∂F̂0 = 0
yields

F̂0 =

∑
i

Fi · K̄ d̂
i∑

i

|Ki
d̂|2 + |C|2

, i = 1, 2, 3 (3)

where K̄ is the complex conjugate of K. The noise to signal
ratio parameter |C|2 is approximated by σ2/A, where A is
defined as the power distribution of natural images according
to the 1/f law [9]: A =

∫
F0

|F0(ξ)|2µ(F0) and parameter ξ

means the frequency. Then we substituting Eqs. (1) and (3)
into (2). Using the 1/f law of natural images, Eq. (2) can be
transformed to

E(d̂|Kd∗
1 ,K

d∗
2 ,K

d∗
3 , σ) =

∫
F0

E(d̂|Kd∗
1 ,Kd∗

2 ,Kd∗
3 , σ, F0)µ(F0) (4)

And we arrange and simplify it as:

E(d̂|K1
d∗ ,K2

d∗ ,K3
d∗ , σ)

=
∑
ξ

A

∣∣∣Kd
1Kd∗

2 −Kd∗
1 Kd

2

∣∣∣2+∣∣∣Kd
1Kd∗

3 −Kd∗
1 Kd

3

∣∣∣2+∣∣∣Kd
2Kd∗

3 −Kd∗
2 Kd

3

∣∣∣2
|Kd

1 |2+|Kd
2 |2+|Kd

3 |2+C2

+σ2 ·
∑
ξ

[ C2

|K1
d|2+|K2

d|2+|K3
d|2+C2

+ 1]

(5)

Therefore, we evaluate RCA at d∗ when the noise level is σ
using

R(K1,K2,K3|d∗, σ)
= min

d∈D/d∗
E(d|K1

d∗,K2
d∗,K3

d∗,σ)−E(d∗|K1
d∗,K2

d∗,K3
d∗,σ) (6)

where D = {c1d∗, c2d∗, . . . , cld∗} is a set of blur size sam-
ples. In our implementation, {ci} is set to {0.1, 0.15, ..., 1.5}
at step 0.05. We then normalize Eq. (6) and get

M(K1,K2,K3, d, d
∗)

=

[
1
n

∑
ξ

A

∣∣∣Kd
1Kd∗

2 −Kd∗
1 Kd

2

∣∣∣2+∣∣∣Kd
1Kd∗

3 −Kd∗
1 Kd

3

∣∣∣2+∣∣∣Kd
2Kd∗

3 −Kd∗
2 Kd

3

∣∣∣2
|Kd

1 |2+|Kd
2 |2+|Kd

3 |2+C2

] 1
2

(7)

We have
R = min

d∈D/d∗
M(K1,K2,K3, d, d

∗) (8)

where n is the pixel number of the PSF. A larger R value
indicates the energy function for DFD is steeper and therefore
the estimation will be more robust to image noise and weak
texture.

2.2. RCA Optimization

11×11 19×19 29×29 37×37 47×47

Fig. 1. Resolution enhancement of RCA by up-sampling and
coordinate descent.

2.2.1. Generating Rotating Coded Aperture by Genetic Algo-
rithm

We adopt the genetic algorithm (Table 1) to generate the op-
timal RCA. In Table 1, the aperture pattern k of size N ×N
can be computed from a sequence b which contains only 0 or
1 of the length N2. The first N elements from b were put into
the first row of k and the next N were chosen corresponding
to the next row, and so on. So the k can be constructed to rep-
resent the aperture pattern in the spatial domain. Using this
method, we obtain the optimal RCA pattern with low resolu-
tion shown in Fig. 1(a). The optimal rotating angles with the
optimal coded aperture patten θi are 0◦, 110◦, and 235◦.

2.2.2. Improving the Aperture Resolution by Coordinate
Descent

In order to obtain a high resolution optimal aperture pattern
for practial application, we refine the RCA pattern obtained in
Section 2.2.1. We first amplify the aperture resolution from
11×11 to 13×13 by bicubic interpolation and then refine the
resolution through coordinate descent optimization. We re-
peat this process until reaching the resolution of 47×47 at the
step of 2×2 when the performance cannot be improved any-
more. Fig. 1 shows the refinement process with resolution
varying from 11×11 to 47×47. The far right aperture is our
final optimized RCA pattern for depth estimation.

2.3. RCA-based Depth Estimation

First, we estimate depth information of the captured scene.
We reconstruct the sharp images F̂ d

0 using Eq. (3) with a set
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Table 1. Genetic Algorithm for RCA

Step 1: Initialization:
D = {c1d∗, c2d∗, . . . , cld∗}; θ0i =[0◦, 120◦, 240◦];
g = 0; generate S random binary sequences of length

L = N ∗N ;.
Step 2: Calculation (from g = 1 : G):

2.1. Selection : For each sequence b, we computed the
kernel function k. And all of the kernel function ki,(i=1,2,3)

are obtained by rotating k with the optimal rotation angel
θg−1
i,(i=1,2,3) in the anti-clockwise direction. Then we calcu-

late the corresponding constraint values by using Eq. (8) to
choose the best Z out of S sequences. And the constraint val-
ues are computed through Eq. (8) again by using angle set H
with the chosen Z sequences. Only the best angle combina-
tion is selected to be the optimal rotating angles θgi .

2.2. Repeat until the number of sequences increases to S
from Z.

Crossover : Copy two sequences from the Z sequences
of Step 2.1 randomly, and then exchange each pair of corre-
sponding bits with a probability of p1 in turn, to obtain two
new sequences.

Mutation : For each new sequence, flip each bit with a
probability p2.
Step 3: Calculate all of the remaining sequences by Equation
8 and output the optimal result.

d∗=7, N = 11, S = 4000, Z = 400, p1 = 0.2, p2 = 0.05, G = 60

and H means a angle set, we set the first rotation angle of aperture
as 0◦, then the other two angles combined from 0◦ to 355◦ at the
step of 5◦.

of PSFs under different depths. Then the corresponding error
e(x, y) can be computed through the sharp images,

e(x, y) = min
d∈D

∑
i=1,2,3

∣∣∣fi − IFT (F̂ d
0 ·Kd

i )
∣∣∣ (9)

where IFT is the 2-D inverse Fourier transform. The depth
corresponding to the minimal residual at each local region is
the desired depth information. By averaging the reconstruc-
tion error over a small local window, we can get a depth map
of the captured scene.

Second, the in-focus image can be reconstructed by us-
ing the calculated depth map. We use the Wiener deconvolu-
tion similar to Eq. (3) to deblur the defocus image by using
corresponding kernel under estimated depth. Finally we can
recover the all-focus image f̂0 as,

f̂0 = IFT (F̂
e(x,y)
0 (x, y)) (10)
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Fig. 2. The joint of power spectra (normalized frequency) of
three different rotating aperture patterns: the red solid curve is
the average of three rotating coded apertures, the other curves
are corresponding to each single rotating aperture.

3. EXPERIMENTAL RESULTS

3.1. Setup

3.1.1. Simple Scenes

We use two simple models which are attached with rich and
weak textures half-by-half as shown in Fig. 3(a) and 3(b) to
evaluate the RCA patterns.

Ladder: As the distance between two adjacent steps is 10
cm, Ladder cube has many granular depth layers distributing
from 0.5 m to 2.0 m. The focal plane is set at 1.0 m.

Cone: Depth in this scene is continuously between 1.0 m
and 4.0 m, and the focal plane is at 1.0 m.

2.0

1.5

1.0

0.5(m)

4.0

3.0

2.0

1.0
(m)

(a) (b)

(c) (d)

Fig. 3. DFD results on two synthetic 3D scenes: (a) (b) 3D
scenes and the corresponding ground-truth depth maps, the
left group is Ladder and the right group is Cone; (c) estimat-
ed depth maps of Ladder recovered by method in [1], rotat-
ing circular aperture, and our rotating aperture; (d) estimated
depth maps of Cone.
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Rich texture Weak texture
Ladder Cone Ladder Cone

Levin’s aperture [1] 0.6199 0.5036 1.7092 3.1856
Circular aperture 0.5141 0.2464 0.5045 0.2595
Proposed aperture 0.2875 0.1211 0.2889 0.1267

Table 2. Quantitative DFD results on simple models in terms
of root mean square error (RMSE).

The distances mentioned above are relative to the associ-
ated image planes of the virtual camera with a focal length of
50 mm. All the images taken from the 3D scenes are normal-
ized into [0, 1], and are polluted with white Gaussian noise
with standard deviation σ = 0.005 to verify the error resilience
of the evaluated methods.

3.1.2. Complex Scenes

To further evaluate our method in a more realistic scenario,
we create more realistic indoor and outdoor scenes, named
Living room in Fig. 4(a) and 4(b), and Garden in Fig. 4(c)
and 4(d). The Living room is an indoor scene. The depth of
the scene is between 0.5 m and 3.0 m, and the focal plane
is at 1.5 m. The Garden is an outdoor scene. The depth of
the scene is between 0.8 m and 6.8 m approximately, and the
focal plane is at 3.0 m.

3.0

2.0

1.0

0.5
(m)

7.0

5.0

3.0

1.0
(m)

(a) (b) (c) (d)

Fig. 4. DFD results on Living room and Garden: the top row
means the ground truth sharp image and corresponding depth
map with two scenes, the middle row shows the recovered all-
focus image and corresponding estimated depth map by using
the coded aperture pairs [14], and the bottom row shows the
recovered image and estimated depth map by using our RCA;
(a) sharp images about Living room, (b) depth maps about
Living room, (c) (d) sharp images and corresponding depth
maps about Garden.

RMSE PSNR(dB)
Living room Garden Living room Garden

Zhou’s pairs [14] 3.3045 3.8770 34.37 31.36
Proposed aperture 1.2440 1.7230 39.05 35.38

Table 3. Quantitative DFD results on three realistic 3D scenes
in terms of RMSE and PSNR.

3.2. Results and Discussions

Quantitative results of the recovered depth maps are present-
ed in Table 2, and are consistent with the visual results shown
in Fig. 3. Our RCA has the lowest root-mean-squared er-
rors (RSME) for the estimated depth maps against the ground
truth. The results have shown the superiority of RCA over
other aperture patterns. For the realistic indoor and outdoor
scenes, we recover the depth estimation and obtain the sharp
image from defocus shown in Fig. 4. In Table 3, the RMSE
results between the true depth map and estimated depth map
and the peak signal-to-noise ratio (PSNR) between the ground
truth image and recovered sharp image results show that the
RCA is able to recover more accurate depth information and
better all-focus images than coded aperture pairs in [14].

Aperture patterns with more zero-crossings in the fre-
quency domain shown in Fig. 2, are more powerful in dis-
tinguishing the blurring kernels with respect to the associated
depth. In our RCA, the zero-crossings of the aperture are
spanned across the 2D frequency domain through rotation.
The pattern of the aperture is optimized to maximize the depth
distinguishability under the rotation. In this way, the zero-
crossings of the blurring kernels at different scales do not
coincide so that the associated depth layers can be identified.

4. CONCLUSION

In this work, we represent rotating coded aperture to recov-
er depth information from defocus. In our RCA, we need
only an optimized coded mask, and multiple images are cap-
tured at a set of optimal rotated locations of the aperture. We
first derive a criterion to measure the goodness of a RCA in
terms of depth from defocus. The coded pattern is optimized
in a multiscale framework: the shape is first searched at the
lowest resolution, and then refined progressively via coordi-
nate desent with a designed cost function. Simulation results
show that our RCA significantly improve DFD performance
over the previous coded apertures. The performance could be
improved by selecting a more powerful deconvolution frame-
work, and the key is to trade off the complexity of mathemat-
ical manipulations.
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