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ABSTRACT off-line reconstruction method, since it requires acceshé
We develop a novel joint-view Kalman filter for causal re- CS meagulrgment_s of the ent|r.e group of V'.deo frames and
construction of compressed-sensed multiview videos. ConFaS_prOh'b't'Vely high computatlona_ll complexity. Insteat ,
pressed-sensed multiview video frames are initially recon eCt'\ée frtf_;lme-by-frarl;)ne _reci)gstrrinonhc_:a: bt'?l z;:ttemptet_ﬂ wi
structed individually vig; -norm minimization. Then, a joint- an adaptive sparse asis [ _]’ [14], w 1ch Stifl has 5|gam_lic
view state transition model is established for each pair o?omplex_lty dge to the adaptive calculatlo_n O.f thg sparsesbas
neighboring views using motion or motion-disparity field es and the iterative nature of the convex optimization method.

timates. Experimental results demonstrate significambly i SAIternanver, Iia(ljmalr; fllgtered cor|r|1pressed tsenfl?_g (KF-
proved reconstruction quality compared to conventional C§ ) was suggested [15] to causally reconstruct time se-

reconstruction and independent-view (single-view) mwotio quences of sparse signals with unknown and slow time-
compensated Kalman filtering. varying sparsity patterns from CS measurements. In [16],

KF-CS was used to reconstruct real-time cardiac and brain
Index Terms— Compressed sensing, joint reconstruc-image sequences from dMRI data with significantly improved
tion, Kalman filter, motion/motion-disparity compensatio reconstruction results compared to conventional CS method
multiview video. More recently, a generalized KF-CS method was considered
[17] to incorporate motion estimation and enhance KF-CS for
1. INTRODUCTION compressed-sensed monoview video reconstruction.
In this work, for the first time in the literature, we
Compressive sampling (CS), also referred to as compressedesent a Kalman filtering algorithmic approach to recon-
sensing, deals with sub-Nyquist sampling of sparse sigifals struct compressed-sensed multiview video sequences. Our
interest [1]-[3]. Rather than collecting an entire Nyqust  contributions include a new joint-view state transitiondab
semble of signal samples, sparse signals can be recomstructhat utilizes motion or motion-disparity compensation and
from a small number of (random [3] or deterministic [4]) lin- joint-view Kalman filter that updates each pair of adjacent
ear measurements. As a fast data acquisition modality, €S haiews simultaneously. The multiple views are initially re-
been successfully applied to time-sequence problems such eovered independently via minimizing thle-norm of the
dynamic magnetic resonance imaging (dMRI) [5], hyperspec2-D DCT coefficients. Then, a joint-view state transition
tral imaging [6], distributed video coding [7], [8], and niul model is established by estimating the motion or motion-
view video coding [9], [10]. disparity field between current and previous time instants.
To reconstruct compressed-sensed video sequences, cafterwards, a sliding-window joint-view motion-adaptioge
ventional methods establish an appropriate sparse data dmotion-disparity-adaptive Kalman filter is run for eachrpai
main representation and solve a convex optimization probef adjacent views and data fusion is utilized to obtain thalfin
lem that minimizes thé;-norm of the sparse domain coef- reconstruction. Experimental studies presented in thiepa
ficients. An intuitive (JPEG-motivated) approach is to inde illustrate the theoretical development and demonstraaé th
pendently recover each frame using the 2-D discrete cosirtbe proposed joint-view motion-adaptive or motion-disiyar
transform (2-D DCT) [11] or a 2-D discrete wavelet trans-adaptive Kalman procedure outperforms independent-view
form (2-D DWT). To enhance sparsity by exploiting correla-motion-compensated Kalman and conventional CS methods.
tions among successive frames, several frames can beyjointl
recovered with a 3-D DWT [12] basis. Joint multi-frame re- 2. KALMAN FILTERING NOTATION AND
covery of this form, however, can be considered only as an BACKGROUND
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equation asx’ € RP, D = mn, t = 1,...,p. Each camera performs
Xt = FeXe—1 + BeUuy + Wy (1) independent CS frame acquisition to obtain the CS measure-
k _ k PxD j; H H
wherex; is the state vector at timgF, is the state transition m_entzt . Hx; whereH € R is the sensing matrix
matrix which applies the effect of, 1 1o x;, U is the control with entries generated from a zero-mean, unit-variancesGau
b1 7 sian distribution. Onc#l is generated beforehand off-line, it

input, B, is the control input matrix which applies the effect is fixed to process all frames in all views. We assume inde-

of u, t0x;, andw, is the process noise. The process noise iy, o identically distributed (i.i.d.) Gaussian noiserie

o .pe
assumed to be drawn from a zero mean multivariate Gaussugn o

o : . . . measurement/transmission channel such that the decoder re
distribution with covariance matrig;. In this work, we as-

R k _ Sk k _ k k —
sume that no control input is involved and the state traomsiti cevesy; = z; +v; = Hxy + vy, for_k =1,...,qand
L t = 1,...,p, where the measurement noigg has autocorre-
model is simplified to

lation matrixR¥ 2 E{viv}"} = ¢2Ip. In the following,

X; = FiXp_q + W;. (2)  the proposed joint-view Kalman filter is developed in detail

Measurements of the system can be performed accordingq Single-view state-transition model
to the model
v = Hixy + vy (3) The state transition of a monoview video sequence [17] can
be used to develop the state transition model for the indalid

wherey, is the measurement vectdd; is the transforma- kth view,

tion matrix that maps; into the measurement domain, and
v, is measurement noise. As with the process noise, measure-
ment noise is assumed to be zero-mean white Gaussian with

covariance matriR;. _ where F¥ performs linear motion-compensated prediction
The KF algorithm that causally recovers a time sequencgom ¢+ — 1 to ¢ for the kth view, w¥ is the prediction error,

P p i . . .. .
{x:};—, from the measurement sequen };_, INVOIVES  4nd the autocorrelation matrix of the prediction error is as
iterations between two stages, prediction and measuremegt . «d to beQt £ E{w’“w’“T} —Ipfork = 1,..,q and

t t "Wt - e

update. With initialized variableg,|o, Pojo and knownF',
H;, Q;, andR; values, the standard KF equations for the
prediction stage are

xf:fof_l +Wf, t=1,...,p, (8)

t=1,...,p.

3.2. Joint-view state-transition model

Xepp—1 = FaXp_1p4— 4 o . . .
Htle—1 = FeXe-1]t-1 @ nour joint-view state transition model, two adjacent view
and x¥ andx"! captured at the same timeby two neighbor-
Py, = FtPt—l\t—lF;r +Q, (5) Ing cameras are stacked to form a single state vegtoe

. R R . [xF" xF 17T ¢ R2P. For fast-motion video sequences, a
whereP,;_; = E{(x; — Xys—1)(x¢ — Xy¢—1)" } isthe pre-  plock-diagonal state transition mati% can be formed using
diction error autocorrelation matrix ((5) can be derivedras FF, andeJ,gil as the diagonal elements
[18], for example). The measurement update equations are’ ’

iven b k
e [ ’,5?.1} - [F’“ . {Xgﬂ] +| ”Zﬂ ©)
~ ~ ~ - 1
Xeje = Xeje—1 + Ke(ye — HiXypp 1) (6) Xt 0 Fpj x5 Wi
and Xt £ F, L W
Py =Py — KiHi Py (7)

whereF: ,,i = k, k+ 1, is the motion compensation operator
whereP,, = E{(x; — Xy)(x: — Xy¢)"} is the updated  that predicts théth view at timet from theith view at time
error autocorrelation matrix and the Kalman gdiy is ¢ — 1. For slow-motion multiview video sequences, since the
given byK; = Py, H{ (H,P,;, H + Ry)~", which  ¢ross-view scene change from time- 1 to timet is small,

can be obtained by minimizing the mean squared e”%othif,”t,l andﬁfjll\tfl can be used to prE‘diﬁZ\t'j =

E{llx; - ﬁt\tug}- k,k + 1. Therefore, the joint-view state transition model can
be formulated as
3. THE DEVELOPED JOINT-VIEW KALMAN
FILTER
Xf _ %ka %Fle
Consider a multi-camera systemgtameras that capture the [Xfﬂ} T | Lk Lpk+l xFH] b
same scene from different positions. Thé&th camera gen-  ~—— 27 bRt 2 bk ~——

erates a sequence of video fran¥§ ¢ R™*" vectorized Xt 2 F, Xi-1 Wi

k k
]+ k] o
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whereF{,i, i,j = k,k+1,i # j is the cross-view motion- After the KF updatex,, = [?cflt ﬁf‘jl] is obtained,

disparity-compensation operator that predictsitheview at the decoder moves one view forward and performs joint-

timet from thejth view at timet — 1. view motion-compensated or motion-disparity-comperdate
The compact expression for joint-view state transition is (MC/MDC) KF again forx, = [x’"!' x®™2]T. Such

sliding-window based joint-view MC/MDC-KF is conducted

X¢ = FiX¢—1 + Wy A yntil all g views at timet are decoded. Finally, the “middle”
wherew, is the prediction error with auto-correlation matrix Views & = 2,...¢ — 1) that have two available decodings are
Q: 2 E{w,w!} = Lp. reconstructed by the average of the two decoding results.
3.3. Joint-view Kalman filter update 4. EXPERIMENTAL RESULTS AND

Fig. 1 depicts the system architecture for the proposed work PERFORMANCE ANALYSIS

We aim at developing a procedure for causal reconstructio
of multiview video sequences that provides better recanstr
tion quality than/;-norm minimization based CS recovery.
At time instantt, the decoder first performs CS recovery of
each pair of neighboring view?ét’cs,j = k,k + 1. Then,
motion (F; by (9)) or motion-disparity §; by (10)) esti-
mation is performed using the currently recoveb?agacs,

fh this section, we experimentally study the performance of
the proposed joint-view KF decoder by evaluating the percep
tual quality of the reconstructed multiview video sequence
and their peak signal-to-noise ratio (PSNR). Three datg set
Balloons, Bookarrival, andBallet, each with a resolution of

48 x 64 pixels are used. Each video sequence consists of
_ _ _Los q = 5 views captured by different cameras and each view
J = k.k + 1, and the sto_red pre\_/|0usly reC(_)verg_glL ' containg = 50 successive frames. FBalloonsandBookar-

j = k.k+ 1. The resuling motion or motion-disparity rival, motion along the temporal direction is relatively slow

: ah T S . .
field F/;, ¢ = kk+ 1,7 = kk+1, is then used in 5y gisparity difference between adjacent views is also rel
the joint-view motion-compensated prediction in (9) or thegyely small. Ballet has faster motion and larger disparity

joint-view motion-disparity-compensated prediction &0}, jtferences. In all case studies, processing is carriedolyt
respectively. on the luminance component.

v/ 2o - — At our indepepder_n and distributed CS engoder side, each
7 CS recovery ,-:lk.hl; ME (MDE) ,-,,:uf MC(MDc>.KF/jAT> frame of each view is handled as a vectorized column of
T ‘ length N = 3072 multiplied by theP x N Gaussian matrix

H. In our experiments, the CS ratio is setjfét: 0.5. The
ﬁ/;ﬁ”jik“ elements of the capture@d-dimensional measurement vector

are corrupted by independent Gaussian noise of zero-mean

i 2 _
Fig. 1. Causal recovery of CS multiview video sequenceé"‘nd variance= = 0.25.

with motion estimation (ME) or motion-disparity estimatio Initially, each frame is reconstructed independently by
(MDE). seeking a sparse representation in the 2-D DCT domain using

the interior-point method [19]. With the initially recon-
structed frames, the motion or motion-disparity field betwe

Thg staqdard KF algorith.m_ can be applied to_r.nUItiVieWadjacent frames (views) is estimated by the optical flow
scenarios with the proposed joint-view state transitiometo method [20]

and the resulting prediction equations are as in (4) and (5)
with Q; = Iop. For the KF update, we collect the CS mea-
surement vectors for the two neighboring views at tinaed
form a single measurement vectpr = [y5 y* 1T €
R2P. The same CS matrifl € RP*P is being used for
each view, thereforg, can be expressed as

In our experiments, we compare the performance of
three decoders: Direct;-norm minimization as in [11];
independent-view (one-view) motion-compensated Kalman
filter decoder as in [17]; and the proposed joint-view motion
compensated or motion-disparity-compensated decodef (MC
MDC-KF) with two joint views. Fig. 2 shows the recon-
v = Hx, + v (12) structed3rd view of the25th frame ((a?)—(a4)) an2Bth frame
((b2)-(b4)) of theBalloonsandBookarrival sequence, respec-
tively. SinceBalloonsandBookarrival have slow motion and
small view differences, motion-disparity-compensatee- pr

pendent zero-mean observation noise with covariancexmatrfliction is performed as in (10). It can be observed that the
R, = o2L,p. The measurement update equations are theRroposed joint-view (two views, herein) MDC-KF decoder

given by (6) and (7) withH, replaced b)ﬁ and the Kalman Provides much better visual quality. The same experiment is
gainK, is given by next carried out on th8allet sequenceBallet has fast mo-

o B tion and large view differences, therefore we perform mmtio
K, = Pt‘t,lHT(HPt‘t,lHT +R,) L (13) compensated prediction as in (9). A similar conclusion can

~ H 0 . . . .
whereH = o H andv, € R?? is2P-dimensionalinde-
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Fig. 2. Reconstructedalloons ((al)-(a4)) andBookarrival
((b1)-(b4)) data sets: (al, bl) Original frame; (a2, bg2)
norm CS recovery; (a3, b3) single-view motion-compensated
Kalman filtering; and (a4, b4) joint-view (two views) motion
disparity-compensated Kalman filtering & 0.5N).

(c1) (c2) (c3) (c4)

Fig. 3. ReconstructedBallet data set: (cl) Original
frame; (c2)¢;1-norm CS recovery; (c3) single-view motion-
compensated Kalman filtering; and (c4) joint-view (two
views) motion-compensated Kalman filtering & 0.5N).

be drawn from Fig. 3 that shows the reconstru@stiview

of the 30th frame of theBallet sequence. The joint-view MC-
KF decoder offers significantly clearer reconstructionntha
the single-view MC-KF decoder and-norm CS decoding.
Fig. 4 shows the decoder PSNR values versus frame/time in-
dex. KF-CS reconstructed PSNR values increase significantl
as time elapses compared to conventional minindfginorm
reconstruction. Compared to single-view MC-KF decoding,
the proposed joint-view MDC-KF and joint-view MC-KF
decoders offer as much as 4 dB PSNR improvement for the
Balloons sequence, 3 dB improvement for tBaokarrival
sequence, and 1.4 dB improvement for Badlet sequence,
respectively.

5. CONCLUSIONS

In this work, we developed and presented for the first time
in the literature a joint-view Kalman filtering approach for
causal reconstruction of compressed-sensed multivieaovid
sequences. Conventional CS recovery is performed to ob-
tain initial reconstructions followed by motion or motion-
disparity estimation. Then, each pair of adjacent views
is jointly updated by the motion-compensated or motion-
disparity-compensated Kalman filter. Experimental result
demonstrated that the proposed joint-view KF decoder out-
performs significantly conventional minimuép-norm recon-
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