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ABSTRACT

We develop a novel joint-view Kalman filter for causal re-
construction of compressed-sensed multiview videos. Com-
pressed-sensed multiview video frames are initially recon-
structed individually vià1-norm minimization. Then, a joint-
view state transition model is established for each pair of
neighboring views using motion or motion-disparity field es-
timates. Experimental results demonstrate significantly im-
proved reconstruction quality compared to conventional CS
reconstruction and independent-view (single-view) motion-
compensated Kalman filtering.

Index Terms— Compressed sensing, joint reconstruc-
tion, Kalman filter, motion/motion-disparity compensation,
multiview video.

1. INTRODUCTION

Compressive sampling (CS), also referred to as compressed
sensing, deals with sub-Nyquist sampling of sparse signalsof
interest [1]-[3]. Rather than collecting an entire Nyquisten-
semble of signal samples, sparse signals can be reconstructed
from a small number of (random [3] or deterministic [4]) lin-
ear measurements. As a fast data acquisition modality, CS has
been successfully applied to time-sequence problems such as
dynamic magnetic resonance imaging (dMRI) [5], hyperspec-
tral imaging [6], distributed video coding [7], [8], and multi-
view video coding [9], [10].

To reconstruct compressed-sensed video sequences, con-
ventional methods establish an appropriate sparse data do-
main representation and solve a convex optimization prob-
lem that minimizes thè1-norm of the sparse domain coef-
ficients. An intuitive (JPEG-motivated) approach is to inde-
pendently recover each frame using the 2-D discrete cosine
transform (2-D DCT) [11] or a 2-D discrete wavelet trans-
form (2-D DWT). To enhance sparsity by exploiting correla-
tions among successive frames, several frames can be jointly
recovered with a 3-D DWT [12] basis. Joint multi-frame re-
covery of this form, however, can be considered only as an
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off-line reconstruction method, since it requires access to the
CS measurements of the entire group of video frames and
has prohibitively high computational complexity. Instead, ef-
fective frame-by-frame reconstruction can be attempted with
an adaptive sparse basis [13], [14], which still has significant
complexity due to the adaptive calculation of the sparse basis
and the iterative nature of the convex optimization method.

Alternatively, Kalman filtered compressed sensing (KF-
CS) was suggested [15] to causally reconstruct time se-
quences of sparse signals with unknown and slow time-
varying sparsity patterns from CS measurements. In [16],
KF-CS was used to reconstruct real-time cardiac and brain
image sequences from dMRI data with significantly improved
reconstruction results compared to conventional CS methods.
More recently, a generalized KF-CS method was considered
[17] to incorporate motion estimation and enhance KF-CS for
compressed-sensed monoview video reconstruction.

In this work, for the first time in the literature, we
present a Kalman filtering algorithmic approach to recon-
struct compressed-sensed multiview video sequences. Our
contributions include a new joint-view state transition model
that utilizes motion or motion-disparity compensation anda
joint-view Kalman filter that updates each pair of adjacent
views simultaneously. The multiple views are initially re-
covered independently via minimizing thè1-norm of the
2-D DCT coefficients. Then, a joint-view state transition
model is established by estimating the motion or motion-
disparity field between current and previous time instants.
Afterwards, a sliding-window joint-view motion-adaptiveor
motion-disparity-adaptive Kalman filter is run for each pair
of adjacent views and data fusion is utilized to obtain the final
reconstruction. Experimental studies presented in this paper
illustrate the theoretical development and demonstrate that
the proposed joint-view motion-adaptive or motion-disparity-
adaptive Kalman procedure outperforms independent-view
motion-compensated Kalman and conventional CS methods.

2. KALMAN FILTERING NOTATION AND
BACKGROUND

The KF model assumes that the state of a system at timet

evolves from the prior state at timet − 1 according to the
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equation
xt = Ftxt−1 + Btut + wt (1)

wherext is the state vector at timet, Ft is the state transition
matrix which applies the effect ofxt−1 to xt, ut is the control
input, Bt is the control input matrix which applies the effect
of ut to xt, andwt is the process noise. The process noise is
assumed to be drawn from a zero mean multivariate Gaussian
distribution with covariance matrixQt. In this work, we as-
sume that no control input is involved and the state transition
model is simplified to

xt = Ftxt−1 + wt. (2)

Measurements of the system can be performed according
to the model

yt = Htxt + vt (3)

whereyt is the measurement vector,Ht is the transforma-
tion matrix that mapsxt into the measurement domain, and
vt is measurement noise. As with the process noise, measure-
ment noise is assumed to be zero-mean white Gaussian with
covariance matrixRt.

The KF algorithm that causally recovers a time sequence
{xt}

p
t=1 from the measurement sequence{yt}

p
t=1 involves

iterations between two stages, prediction and measurement
update. With initialized variableŝx0|0, P0|0 and knownFt,
Ht, Qt, andRt values, the standard KF equations for the
prediction stage are

x̂t|t−1 = Ftx̂t−1|t−1 (4)

and
Pt|t−1 = FtPt−1|t−1F

T
t + Qt (5)

wherePt|t−1 , E{(xt − x̂t|t−1)(xt − x̂t|t−1)
T} is the pre-

diction error autocorrelation matrix ((5) can be derived asin
[18], for example). The measurement update equations are
given by

x̂t|t = x̂t|t−1 + Kt(yt − Htx̂t|t−1) (6)

and
Pt|t = Pt|t−1 − KtHtPt|t−1 (7)

wherePt|t , E{(xt − x̂t|t)(xt − x̂t|t)
T} is the updated

error autocorrelation matrix and the Kalman gainKt is
given by Kt = Pt|t−1H

T
t (HtPt|t−1H

T
t + Rt)

−1, which
can be obtained by minimizing the mean squared error
E{‖xt − x̂t|t‖

2
2}.

3. THE DEVELOPED JOINT-VIEW KALMAN
FILTER

Consider a multi-camera system ofq cameras that capture the
same scene fromq different positions. Thekth camera gen-
erates a sequence of video framesXk

t ∈ R
m×n vectorized

asxk
t ∈ R

D, D = mn, t = 1, ..., p. Each camera performs
independent CS frame acquisition to obtain the CS measure-
mentzk

t = Hxk
t whereH ∈ R

P×D is the sensing matrix
with entries generated from a zero-mean, unit-variance Gaus-
sian distribution. OnceH is generated beforehand off-line, it
is fixed to process all frames in all views. We assume inde-
pendent identically distributed (i.i.d.) Gaussian noise in the
measurement/transmission channel such that the decoder re-
ceivesyk

t = zk
t + vk

t = Hxk
t + vk

t , for k = 1, ..., q and
t = 1, ..., p, where the measurement noisevk

t has autocorre-
lation matrixRk

t , E{vk
t v

kT

t } = σ2IP . In the following,
the proposed joint-view Kalman filter is developed in detail.

3.1. Single-view state-transition model

The state transition of a monoview video sequence [17] can
be used to develop the state transition model for the individual
kth view,

xk
t = Fk

t x
k
t−1 + wk

t , t = 1, ..., p, (8)

where Fk
t performs linear motion-compensated prediction

from t − 1 to t for the kth view, wk
t is the prediction error,

and the autocorrelation matrix of the prediction error is as-
sumed to beQk

t , E{wk
t w

kT

t } = ID for k = 1, ..., q and
t = 1, ..., p.

3.2. Joint-view state-transition model

In our joint-view state transition model, two adjacent views
xk

t andxk+1
t captured at the same timet by two neighbor-

ing cameras are stacked to form a single state vectorxt =

[xkT

t xk+1
T

t ]T ∈ R
2D. For fast-motion video sequences, a

block-diagonal state transition matrixFt can be formed using
Fk

t,k andFk+1

t,k+1
as the diagonal elements

[
xk

t

xk+1
t

]

︸ ︷︷ ︸
xt

=

[
Fk

t,k 0

0 Fk+1

t,k+1

]

︸ ︷︷ ︸
, Ft

[
xk

t−1

xk+1
t−1

]

︸ ︷︷ ︸
xt−1

+

[
wk

t

wk+1
t

]

︸ ︷︷ ︸
wt

(9)

whereFi
t,i, i = k, k+1, is the motion compensation operator

that predicts theith view at timet from theith view at time
t − 1. For slow-motion multiview video sequences, since the
cross-view scene change from timet − 1 to time t is small,
both x̂k

t−1|t−1
andx̂k+1

t−1|t−1
can be used to predictxj

t|t, j =

k, k + 1. Therefore, the joint-view state transition model can
be formulated as

[
xk

t

xk+1
t

]

︸ ︷︷ ︸
xt

=

[
1

2
Fk

t,k
1

2
Fk+1

t,k

1

2
Fk

t,k+1
1

2
Fk+1

t,k+1

]

︸ ︷︷ ︸
, Ft

[
xk

t−1

xk+1
t−1

]

︸ ︷︷ ︸
xt−1

+

[
wk

t

wk+1
t

]

︸ ︷︷ ︸
wt

(10)
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whereF
j
t,i, i, j = k, k + 1, i 6= j is the cross-view motion-

disparity-compensation operator that predicts theith view at
time t from thejth view at timet − 1.

The compact expression for joint-view state transition is

xt = Ftxt−1 + wt (11)

wherewt is the prediction error with auto-correlation matrix
Qt , E{wtw

T
t } = I2D.

3.3. Joint-view Kalman filter update

Fig. 1 depicts the system architecture for the proposed work.
We aim at developing a procedure for causal reconstruction
of multiview video sequences that provides better reconstruc-
tion quality than`1-norm minimization based CS recovery.
At time instantt, the decoder first performs CS recovery of
each pair of neighboring viewŝxj,CS

t , j = k, k + 1. Then,
motion (Ft by (9)) or motion-disparity (Ft by (10)) esti-
mation is performed using the currently recoveredx̂

j,CS

t ,
j = k, k + 1, and the stored previously recoveredx̂

j,CS

t−1 ,
j = k, k + 1. The resulting motion or motion-disparity
field F

j
t,i, i = k, k + 1, j = k, k + 1, is then used in

the joint-view motion-compensated prediction in (9) or the
joint-view motion-disparity-compensated prediction in (10),
respectively.

Fig. 1. Causal recovery of CS multiview video sequences
with motion estimation (ME) or motion-disparity estimation
(MDE).

The standard KF algorithm can be applied to multiview
scenarios with the proposed joint-view state transition model
and the resulting prediction equations are as in (4) and (5)
with Qt = I2D. For the KF update, we collect the CS mea-
surement vectors for the two neighboring views at timet and
form a single measurement vectoryt = [ykT

t yk+1
T

t ]T ∈
R

2P . The same CS matrixH ∈ R
P×D is being used for

each view, thereforeyt can be expressed as

yt = H̃xt + vt (12)

whereH̃ =

[
H 0

0 H

]
andvt ∈ R

2P is2P -dimensional inde-

pendent zero-mean observation noise with covariance matrix
Rt = σ2I2P . The measurement update equations are then
given by (6) and (7) withHt replaced byH̃ and the Kalman
gainKt is given by

Kt = Pt|t−1H̃
T(H̃Pt|t−1H̃

T + Rt)
−1. (13)

After the KF updatêxt|t = [x̂k
t|t x̂k+1

t|t ] is obtained,
the decoder moves one view forward and performs joint-
view motion-compensated or motion-disparity-compensated
(MC/MDC) KF again for xt = [xk+1

t xk+2
t ]T . Such

sliding-window based joint-view MC/MDC-KF is conducted
until all q views at timet are decoded. Finally, the “middle”
views (k = 2, ...q − 1) that have two available decodings are
reconstructed by the average of the two decoding results.

4. EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

In this section, we experimentally study the performance of
the proposed joint-view KF decoder by evaluating the percep-
tual quality of the reconstructed multiview video sequences
and their peak signal-to-noise ratio (PSNR). Three data sets,
Balloons, Bookarrival, andBallet, each with a resolution of
48 × 64 pixels are used. Each video sequence consists of
q = 5 views captured by different cameras and each view
containsp = 50 successive frames. ForBalloons andBookar-
rival, motion along the temporal direction is relatively slow
and disparity difference between adjacent views is also rel-
atively small. Ballet has faster motion and larger disparity
differences. In all case studies, processing is carried outonly
on the luminance component.

At our independent and distributed CS encoder side, each
frame of each view is handled as a vectorized column of
lengthN = 3072 multiplied by theP × N Gaussian matrix
H. In our experiments, the CS ratio is set atP

N
= 0.5. The

elements of the capturedP -dimensional measurement vector
are corrupted by independent Gaussian noise of zero-mean
and varianceσ2 = 0.25.

Initially, each frame is reconstructed independently by
seeking a sparse representation in the 2-D DCT domain using
the interior-point method [19]. With the initially recon-
structed frames, the motion or motion-disparity field between
adjacent frames (views) is estimated by the optical flow
method [20].

In our experiments, we compare the performance of
three decoders: Direct̀1-norm minimization as in [11];
independent-view (one-view) motion-compensated Kalman
filter decoder as in [17]; and the proposed joint-view motion-
compensated or motion-disparity-compensated decoder (MC/
MDC-KF) with two joint views. Fig. 2 shows the recon-
structed3rd view of the25th frame ((a2)-(a4)) and28th frame
((b2)-(b4)) of theBalloons andBookarrival sequence, respec-
tively. SinceBalloons andBookarrival have slow motion and
small view differences, motion-disparity-compensated pre-
diction is performed as in (10). It can be observed that the
proposed joint-view (two views, herein) MDC-KF decoder
provides much better visual quality. The same experiment is
next carried out on theBallet sequence.Ballet has fast mo-
tion and large view differences, therefore we perform motion-
compensated prediction as in (9). A similar conclusion can
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Fig. 2. ReconstructedBalloons ((a1)-(a4)) andBookarrival
((b1)-(b4)) data sets: (a1, b1) Original frame; (a2, b2)`1-
norm CS recovery; (a3, b3) single-view motion-compensated
Kalman filtering; and (a4, b4) joint-view (two views) motion-
disparity-compensated Kalman filtering (P = 0.5N ).

Fig. 3. ReconstructedBallet data set: (c1) Original
frame; (c2)`1-norm CS recovery; (c3) single-view motion-
compensated Kalman filtering; and (c4) joint-view (two
views) motion-compensated Kalman filtering (P = 0.5N ).

be drawn from Fig. 3 that shows the reconstructed3rd view
of the30th frame of theBallet sequence. The joint-view MC-
KF decoder offers significantly clearer reconstruction than
the single-view MC-KF decoder and̀1-norm CS decoding.
Fig. 4 shows the decoder PSNR values versus frame/time in-
dex. KF-CS reconstructed PSNR values increase significantly
as time elapses compared to conventional minimum`1-norm
reconstruction. Compared to single-view MC-KF decoding,
the proposed joint-view MDC-KF and joint-view MC-KF
decoders offer as much as 4 dB PSNR improvement for the
Balloons sequence, 3 dB improvement for theBookarrival
sequence, and 1.4 dB improvement for theBallet sequence,
respectively.

5. CONCLUSIONS

In this work, we developed and presented for the first time
in the literature a joint-view Kalman filtering approach for
causal reconstruction of compressed-sensed multiview video
sequences. Conventional CS recovery is performed to ob-
tain initial reconstructions followed by motion or motion-
disparity estimation. Then, each pair of adjacent views
is jointly updated by the motion-compensated or motion-
disparity-compensated Kalman filter. Experimental results
demonstrated that the proposed joint-view KF decoder out-
performs significantly conventional minimum̀1-norm recon-
struction and single-view KF, both in visual perception and
PSNR value.

Fig. 4. Rate-distortion performance of (a)Balloons, (b)
Bookarrival, and (c)Ballet data sets.
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