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ABSTRACT

The movement of tongue plays an important role in pronun-
ciation. Visualizing the movement of tongue can improve
speech intelligibility and also helps learning a second lan-
guage. However, hardly any research has been investigated
for this topic. In this paper, a framework to synthesize
continuous ultrasound tongue movement video from speech
is presented. Two different mapping methods are introduced
as the most important parts of the framework. The objective
evaluation and subjective opinions show that the Gaussian
Mixture Model (GMM) based method has a better result
for synthesizing static image and Vector Quantization (VQ)
based method produces more stable continuous video. Mean-
while, the participants of evaluation state that the results of
both methods are visual-understandable.

Index Terms— Multimodal interface, Movement syn-
thesis, Vector Quantization, Gaussian Mixture Model, Ultra-
sound

1. INTRODUCTION

Speech synthesis has been studied by many researchers for
a long time, but relatively little attention has been paid to
use the speech signal to synthesis the movement of acoustic
organs. Recently, there has been increasing interest in inves-
tigating the role of visual information in speech processing.
Researchers have proofed that by adding visual information
of acoustic organ movement to acoustic signals improves the
speech intelligibility in noisy environment [1, 2] in early time.
However, because of the limitation of both hardware and
computation ability, no further studies or applications have
been explored until 1990s. Morishima proposed a framework
using VQ and Neural Networks to build the mapping from
speech signals to 3D key points of a face [3, 4]. After
that, GMM [5, 6] and Hidden Markov Model (HMM) [7]
based method were used to map speech signals to 3D key
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lip positions. Furthermore, real-time talking head system has
been developed to help language learning [8]. Meanwhile,
with the development of Silent Speech Interface (SSI) [9],
researchers realized not only the visual information of face
images, but also the movement of other acoustic organs plays
an important role in speech processing.

The movement of the tongue is critical to the pronun-
ciation [10]. Moreover, the visual information of tongue
movement will contribute to the speech intelligibility [11],
and helps learning a second language [12]. Visualizing the
movement of tongue can also be used in speech therapy for
speech retarded children, of perception and production reha-
bilitation of hearing impaired children and of pronunciation
training [13].

However, hardly any research has been explored on
tongue movement synthesis. To the best of our knowledge,
the only related work is using Deep Neural Network (DNN) to
build a 2-way mapping between vowel speech and ultrasound
image [14], but the authors are focusing on only 6 Chinese
vowels which are stable in pronouncing process and they
also admit that the synthesis of ultrasound images need to be
improved.

This paper proposes a training and synthesis framework
to build the mapping from acoustic speech signals to contin-
uous tongue movement video. VQ-based and GMM-based
mapping methods are applied separately in this framework.
An ultrasound based synchronized visual-audio corpus used
in the experiment is also described. Effectiveness of the
proposed framework is verified by objective evaluation and
subjective opinions.

2. FRAMEWORK

In this section, we will introduce the main parts of the
framework. The framework consists of two parts: training
part, which builds the mapping model; and synthesis part,
which uses speech signal as input to synthesize continuous
tongue movement video.
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2.1. Training

In training part, we first extract the feature vectors from the
acoustic speech signals and ultrasound tongue images. Then
we use the feature vectors to build one-way mapping model.
The training procedures are illustrated in Fig. 1.

Fig. 1. Training procedures

In practical implementation, as the resolution of raw
ultrasound images are very high, a down-sampling procedure
is adopted to reduce the computation time while keeping the
main feature of images.

2.2. Synthesis

In synthesis part, feature vectors of acoustic signals are used
as input of the mapping model. The mapping model generates
the related feature vector of ultrasound images. After that,
reconstruction of image from the feature vector is applied to
get the final tongue images. The synthesis procedures are
presented in Fig. 2.

Fig. 2. Synthesis procedures

In this framework, special attention needs to be paid on
the selection of feature vector of images. As we need to
reconstruct images from the feature vectors in the synthesis
procedure, we must choose features of image with the ability
to reconstruct.

3. MAPPING MODELS

3.1. VQ-based model

VQ-based mapping model is using the VQ technology to
build two codebooks for the input and output vectors respec-
tively and using statistics to build the mapping function from
the input to the output. The training and synthesis algorithm
of VQ-based mapping model are described below:
A. Training:

1. Calculate VQ codebooks of N codeword vectors for
both input vectors and output vectors respectively.

2. Calculate a correspondence histogram, wi,j represents
the number of synchronized jth codeword vector(CV

j )
in video codebooks for the ith codeword vector(CA

i ) in
audio codebooks.

B. Synthesis:

1. For a given new input vector f , find the codeword
vector(CA

f ) that has the minimized distance of it.
2. Sort the list wf,1, wf,2, · · · , wf,N that we can obtain

from training procedure in the order from big to small
wf,x1, wf,x2, · · · , wf,xN . For instance, wf,x1 shows
that (CA

f ) and (CV
x1) synchronized the most in the

training set.
3. We use the K largest count to calculate the expected

output vector in Eq. (1).

CA
f →

∑K
k=1 wf,xkC

V
xk∑K

k=1 wf,xk

(1)

3.2. GMM-based model

The VQ procedure divides continuous data vector into dis-
crete codebook, which could result in distortion of origin data.
In the GMM-based model, we use the probability density
function to map continuous inputs, which is expected to gain
better results.
A. Training:

First we need to build a joint GMM model using the
training set.

For a-dimensional input vector

CA
t = [xi(1), xi(2), · · · , xi(a)]

and b-dimensional input vector

CV
t = [yi(1), yi(2), · · · , yi(b)]

at frame t, the joint vector

zt = [xi(1), xi(2), · · · , xi(a), yi(1), yi(2), · · · , yi(b)]

The joint GMM with M components will be calculated (m
is the index of the component), the parameter set (λz) is
presented as follow:

• Weight: wm

• Mean: vm =

[
vxm
vym

]
• Covariance: Σm =

[
Σxx

m Σxy
m

Σyx
m Σyy

m

]
B. Synthesis : The conditional probability density of given
input vector could be presented as Eq. (2).

P (CV
t |f, λz) =

M∑
m=1

P (m|f, λz)P (CV
t |m, f, λz) (2)
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The expected output CV ′

t with the minimum mean-square
error can be represented as Eq. (3) [6].

CV ′

t = E[CV
t |f ] =

M∑
m=1

p(m|f, λz)Ey
m (3)

Where the mean vector and probability factor are calcu-
lated in Eq. (4) and Eq. (5) respectively.

Ey
m = vym + Σyx

m (Σxx
m )−1(f − vxm) (4)

p(m|f, λz) =
wmN (f ; vxm,Σ

xx
m )∑M

n=1 wnN (f ; vxn,Σ
xx
n )

(5)

4. EXPERIMENTS AND DISCUSSION

4.1. Ultrasound based visual-audio corpus

Speech and visual ultrasound data for a male speaker of
Chinese Mandarin were recorded using directional micro-
phone and Terason T3000 ultrasound system in a soundproof
recording room. Audio was recorded at a sample rate of
44.1K and video was recorded at 90fps with 640 × 480
resolution.

The script of the corpus is a combination of Microsoft
corpus and Speechocean corpus with 1000 sentence. After
cleaning the data, 931 sentences are used for our experiments
with 6,732 seconds audio and 606,133 ultrasound tongue
images.

4.2. Feature extraction

The 1st to 13th Mel Frequency Cepstral Coefficient, its
differential and acceleration coefficients are combined to 39
dimensional feature vectors to present the speech signal with
10ms shift frames using a 25ms Hamming window.

We choose the EigenTongue feature that has the ability
to reconstruct and encode the maximum amount of relevant
information in the ultrasound images [15]. As described
in the section of framework, for the ultrasound images, we
first down-sample the resolution to 160 × 120. In order
to be compatible (albeit artificially) with a more standard
frame rate for speech analysis, the sequences of EigenTongue
coefficients are oversampled from 90 to 100Hz using linear
interpolation. The effective frame size thus corresponds to
10 ms[16]. The first 40 EigenTongue coefficients are used to
present each ultrasound image.

4.3. EigenTongue reconstruction

450,000 ultrasound images were chosen randomly to build the
EigenTongue model. In Fig. 3, we present the result of recon-
struction for a sentence from 40 EigenTongue coefficients to
image (images are picked in 1s interval with 4s in total).

As can be seen from Fig. 3, the reconstructed images
have differences from the origin images, but the most relevant
information is enhanced, mainly the tongue position.

Fig. 3. EigenTongue reconstruction; the up row is the origin
image and the bottom row is the result of reconstruction from
EigenTongue

4.4. Synthesis evaluation

The synthesized EigenTongue coefficients were evaluated by
time-averaged Euclidean error distance E and time-averaged
differential error ∆E between the synthesized EigenTongue
coefficients [xs1, x

s
2, · · · ,xs

d] and origin EigenTongue coef-
ficients [xo1, x

o
2, · · · ,xo

d] (d is the number of dimension of
EigenTongue coefficients, which in this experiment is 40).

E =
1

T

T∑
t=1

√√√√ d∑
n=1

(xsn − xdn)2

∆E =
1

T

T∑
t=1

√√√√ d∑
n=1

(∆xsn −∆xdn)2

For the VQ-based method, we construct 256 codework
for each codebook of input and output. The largest count
K of VQ-based method and the number of component M
of GMM-based method are investigated. The result of the
evaluation is illustrated in Table 1.

Method E ∆E

VQ(K = 1) 7.27 4.61
VQ(K = 4) 6.51 2.97

VQ(K = 16) 6.21 2.08
VQ(K = 64) 6.13 1.53
VQ(K = 256) 6.10 1.31
GMM(M = 1) 6.12 1.17
GMM(M = 4) 6.10 1.42

GMM(M = 16) 6.08 1.60
GMM(M = 64) 6.07 1.77
GMM(M = 256) 6.16 2.21

Table 1. Evaluation result of VQ-based and GMM-based
methods

For the increasingK, E and ∆E are decreasing gradually
in VQ-based method. In GMM-based method, with the
increasing M , E remains in a relatively low magnitude and
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only changes in a small scale. However, ∆E is increasing
which is out of our expectation.

Fig. 4 shows the numeric synthesis results of two methods
with K = 64 and M = 64. The results were compared with
the original EigenTongue coefficients using one sentence. It
could be seen from the figure that while the results of two
methods both follow the trend of the original coefficients
roughly, GMM-based method has a closer tracking, but also
a much greater fluctuation than VQ-based method. GMM-
based method is more sensitive to changes.

Fig. 4. Numeric synthesis results of one sentence, from top
to bottom are the results of 1st, 2nd, 3rd, 4th EigenTongue
coefficients

Fig. 5 presents the visual synthesis result of the methods.
We can observe the general trajectory of tongue from both
results. Meanwhile, the result of GMM-based methods shows
more details than the VQ-based method.

We also investigate 20 students with computer science
background for general opinions of the visual result. The
result could be concluded as:

Fig. 5. Visual synthesis result of one sentence (1s interval, 4s
in total), top row is EigenTongue reconstructed image; middle
row and the bottom row are synthesized by QV-based method
and GMM-based method respectively

• Result of both methods is visual-understandable;
• For static images, the GMM-based method has a better

visual-satisfied result;
• For continuous video, the VQ-based method performs

better, as the tongue is trembling in GMM-based
method, while VQ-based method is more stable.

5. CONCLUSION AND FUTURE WORKS

This paper proposed a promising framework to synthesis con-
tinuous ultrasound tongue movement video through speech.
We also applied two different mapping models to the frame-
work. The results of two models are evaluated by objective
tests, and subjective opinions are also collected.

The evaluation states that both this two methods are
acceptable for synthesizing video, while GMM-based method
has a better result of separated images and VQ-based method
produces more stable video.

For the future research, we prepare to focus on the
following aspects:

• Detailed evaluations;
• Stabilize the video of GMM-based method;
• Improve the presentation of ultrasound images;
• Improve the framework; instead of synthesizing the

images directly, pick up images from an image database
and concatenated to a video might have a better result.
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