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ABSTRACT
In this paper, we propose a novel hierarchical image comple-
tion approach using regularity statistics, considering structure
features. Guided by dominant structures, the target image is
used to generate reference images in a self-reproductive way
by image data enhancement. The structure-guided image data
enhancement allows us to expand the search space for sam-
ples. A Markov Random Field model is used to guide the
enhanced image data combination to globally reconstruct the
target image. For lower computational complexity and more
accurate structure estimation, a hierarchical process is imple-
mented. Experiments demonstrate the effectiveness of our
method comparing to several state-of-the-art image comple-
tion techniques.

Index Terms— Image completion, structure detection,
perspective transformation, image inpainting

1. INTRODUCTION
Image completion or image inpainting aims to fill the missing
parts of an image and make the reconstructed image look
natural. This important topic in image processing gains atten-
tions with the popularity of digital life. And it is widely used
in image editing applications such as watermark removal,
panorama generation and cultural heritage restoration.

In the literature, image completion methods can be classi-
fied into two main categories. The first category is diffusion-
based which propagates structures into the missing region.
Bertalmio et al. [1] take use of the geometric and photomet-
ric information and propagate Laplacian descriptors along the
isophote direction. The main defect of diffusion-based meth-
ods is the blurring artifacts when missing regions is large .

The second category concerns examplar-based methods.
The main idea is to sample the pixels/patches in the known
parts of the image and copy them to the missing region. Ac-
cording to inpainting strategies, exemplar-based methods can
be categorized as greedy methods [2, 3] and global methods
[4, 5, 6, 7, 8]. Greedy methods each time fill one pixel/patch
by searching the best matches as samples and iteratively com-
plete the missing region while global methods fill all missing
pixels simultaneously by optimizing energy functions.
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Among state-of-the-art global methods, Markov Random
Field (MRF) model is widely used to build the energy func-
tion, for it is effective to realize global image consistency
by defining the relationship of local adjacent pixels. In [5],
candidate samples are searched throughout the whole image,
leading to considerable processing time. To constrain the
search space, Ruzic et al. [9] divide the image into sev-
eral regions based on their context and search candidate sam-
ples in similar regions. Meanwhile, He and Sun [8] limit the
search space to only 60 candidates using the statistics of patch
offsets, obtaining gains in both speed and quality. In all of
the works above, the basic operation is pixel/patch transla-
tions. However, broken structures cannot be restored by sim-
ply shifting the known pixels/patches into the unknown re-
gions when image scenes contain complex transformations.
Unfortunately, transformation operations other than transla-
tion are seldom available in MRF-based methods.

In fact, patch transformations such as rotation, scaling [7]
and perspective transform [10] have been taken into account
in coherence-based methods. The main problem for this kind
of method is that more constraints need to be enforced when
increasing the degrees of freedom or the result would fall into
local optimum and suffer structure distortions.

In this paper, we use the MRF model to better realize
global image consistency. At the same time, the search space
is enriched by uniform structure-guided image data enhance-
ment, without giving too much degrees of freedom, thus
leading to fewer structure distortions. Specifically, dominant
structure are extracted based on patch regularity and used as
guidance to generate the enhanced images for reference. To
combine the information of multiple reference images, we
propose a hierarchical MRF-based image completion method
using regularity statistics. Finally, we validate our method by
comparing with state-of-the-art image completion algorithms
on both man-made scenes and natural scenes.

The rest of this paper is organized as follows: Section 2
describes the proposed image completion approach. Experi-
mental results are shown in Section 3 and concluding remarks
are given in Section 4.

2. STRUCTURE-GUIDED IMAGE COMPLETION
VIA REGULARITY STATISTICS

In this section, the proposed image completion method is pre-
sented. Given the target image I , its missing part is denoted
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Fig. 1. Flow chart of the proposed hierarchical structure-guided image completion via regularity statistics.

as Ω, and its contour is indicated by δΩ. The source regions,
on the other hand, are denoted as Φ = I − Ω. Our goal is to
fill Ω seamlessly using the information of Φ. Fig. 1 shows the
main procedure of the proposed method.

2.1. Structure-Guided Image Data Enhancement
2.1.1. Dominant Structure Line Detection

Since human eyes are sensitive to structure consistency, by
detecting and preserving linear structures, the completion
quality can be well improved. Along structure lines, image
patches demonstrate high regularity and this can be a signif-
icant cue on the determination of the lines. Inspired by [8],
we detect the regularity using patch offsets. The frequency
of the matched patches’ relative spacial offsets is calculated.
The most frequent ones form a set of dominant offsets and
are allocated to unknown pixels for completion. The offsets
extraction will be discussed in detail in Section 2.2. To take a
step further, we analyse the dominant offsets which are likely
distributed along dominant structure lines in the offset space,
as shown in Fig. 2(c). We use a RANSAC-based voting
approach [11] to detect the best fitting line as a dominant
structure line. We repeat the RANSAC process over the out-
liers to search multiple dominant structure lines (the red line
in Fig. 2(c)) until the number of inliers is less than a given
threshold.

(a) Input image I (b) Matched features (c) Structure lines

(d) Information quality (e) H(I)

H−1 H−2

H H2

(f) Enhanced results

Fig. 2. Structure-guided image data enhancement.

2.1.2. Perspective Shift Transformation
The ubiquitous foreshortening effects make the results of
MRF-based image completion methods degrade severely, for
they only perform translation operation. We put forward the
concept of Perspective Shift in addition to traditional transla-
tion. Objects are shifted in a way that satisfies foreshortening
effects. To accomplish this task, we estimate a homography
matrix that performs an image registration transformation.

We begin with Speeded Up Robust Features (SURF, [12])
points detection and compute SURF descriptors for each fea-
ture point k. Then, these feature points are matched (as shown
in Fig. 2(b)) under two spacial constraints. Guided by the
dominant structure line l, ki and kj are matched if their vector
−−→
kikj satisfies the distance constraint λmin < |

−−→
kikj | < λmax

and the angle constraint dπ(
−−→
kikj , l) < λθ, where dπ(·, ·) is

the included angle of two lines. λmin ensures no feature point
is matched with itself and λmax is considered based on the
idea of local similarity.

Then we perform a RANSAC-based voting algorithm
over the matched feature points to find the best fitting trans-
formation matrix H. We repeat the RANSAC process over
the outliers to obtain multiple perspective shift transforma-
tions. To find the optimal one, we define two measurements:

Information quantity. We use the percentage of the per-
spectively shifted known information in the missing regions
to measure the information quantity:

Rquantity(H) = |H(Φ) ∩ Ω|/|Ω|, (1)

where H(·) is the perspective shift operation and |Ω| is the
pixel number in the source region Ω.

Information quality. Textures after an ideal perspective
shift operation should match those in the original image. We
concentrate on the outer boundary of Ω with a width of λmax

pixels (denoted as ∆Ω) and define the information quality as:

Rquality(H) =

√
|∆Ω|/

∑
p∈∆Ω

(I(p)− (H(I))(p))2. (2)

Next, the optimal Ĥ is obtained by solving:
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max
H

Rquality(H) s.t. Rquantity(H) > λquantity. (3)

To demonstrate how dominant structure lines guide the trans-
formation estimation, we enumerate lines of different angles
to impose the angle constraint and obtain corresponding Ĥ.
The information quality for each Ĥ is calculated and Fig. 2(d)
shows how angle restriction affects the information quality,
which validates that dominant structure lines are reliable to
guide the algorithm to find H with relatively high Rquality(H).

Moreover, if a certain image registration transformation
exists, Hi could be possibly valid perspective shift transfor-
mation matrices as well (as shown in Fig. 2(f)). Intuitively,
H2 represents a double perspective shift operation and H−1

represents an inverse perspective shift operation. We enrich
the reference images with Hi(I), |i| ∈ {1, 2, 3, 4}.

2.2. Global Completion via Regularity Statistics
In this section, we introduce our MRF-based image comple-
tion method. The MRF-based algorithms [5, 8] treat image
completion as a labelling problem. In our work, we adopt
the same idea of patch offset statistics as [8], which benefits
from better texture and structure preservation. The target im-
age I0 and its enhanced results form a set of reference images
denoted as SI = {I0, ..., IW }. We denote patch offsets as
s = (u, v, w), where (u, v) is the coordinates of the patch
offsets and w ∈ {0, 1, ...,W} indicates the w-th reference
image. We match similar patches and calculate their offsets
by:

s = argmin
s

∥Ψ(p+ s)−Ψ(p)∥22, (4)

where p = (x, y, w) is the position of a patch and Ψ(p) is the
patch centered at (x, y) in Iw. We argue that offsets near the
dominant structure lines contribute more to the completion
process, and optimize the offset histogram within I0 by giv-
ing higher weights to those offsets. Given the statistics of all
patch offsets from I0 to Ii, we pick out the most Ki frequent
ones and finally acquire a total number of K =

∑W
i=0 Ki

dominant offsets denoted as Ss = {si}(i = 1, ...,K). Then
image completion is realized by seeking the optimal labelling
L(p) = i ∈ {1, ...,K} and copying the pixel value at p+ si
to the pixel at p.

2.2.1. Image Completion Model Based on MRF Prior
In this section, we describe our MRF energy function. Com-
pared to the definition of [8], image gradient are taken into
account to better preserve structure. Moreover, we reinforce
the boundary treatment by using patch difference rather than
pixel difference to accomplish better boundary consistency.

Given K dominant offsets, we define the energy function
to evaluate the labelling:

E(L) =
∑

(p,q)∈N4

E(L(p), L(q)) + α
∑
p∈Ω

Ed(L(q)), (5)

where L(x) = i is the labelling that assigns the i-th dominant
offset to the pixel at p, N4 is the neighborhood system, α = 2
is the weight to combine two energy terms:

Smoothness term: E(L(p), L(q)) penalizes the discon-
tinuity within nearby pixels. It is defined as (for simplicity,
we denote i = L(p), j = L(q)):

E(i, j) = ∥I(p+ si)− I(p+ sj)∥1
+ β∥∇I(p+ si)−∇I(p+ sj)∥1,

(6)

where ∇I is the magnitude of the image gradient, β = 2 is
the weight to combine intensity and gradient terms.

Data term: Ed(L(p)) is defined as:

Ed(i) =


+∞, if p+ si /∈ Φ

0, if p+ si ∈ Φ and x ∈ Ω\δΩ
d(Ψ(p+ si),Ψ(x)), other

, (7)

where d(Ψ(p),Ψ(q)) is the patch difference measuring the
consistency along the boundary between Ω and Φ:

d(Ψ(p),Ψ(q)) = ∥G⊗ (Ψ(p)−Ψ(q))∥1
+ β∥G⊗ (∇Ψ(p)−∇Ψ(q))∥1,

(8)

where G is the Gaussian weighting matrix and ⊗ is the point-
wise product operator. Only the known pixels (Ψ ∩ Φ) are
calculated.

Once the MRF graph is given, the energy optimization can
be achieved using multi-label graph-cuts algorithm.

2.2.2. Hierarchical Implementation
We propose a hierarchical implementation for low computa-
tional complexity. Furthermore, the algorithm would be less
sensitive to noises and local singularities, thus dominant off-
sets would be more reliable to demonstrate image regularity.
To be specific, the target image is downsampled and com-
pleted using the proposed method to obtain a labelling map
s(p) = si(if L(p) = i) which describes the offset assign-
ments. Then we multiply dominant offsets by two and up-
sample the labelling map using the nearest interpolation. To
correct small misalignments, we propose an outside-in offset
refinement algorithm based on pixel priority. The pixel pri-
ority is calculated according to [2]. The labelling map of the
pixel with the highest priority is refined:

ŝ(p) = arg min
s∈N5(s(p))

d(Ψ(p+ s),Ψ(p)), (9)

where N5(s) = N4(s) ∪ {s}. At each iteration of refining,
the labelling map changes by at most one pixel but the final
adjustment can be large thanks to the hierarchical process.
Fig. 3 demonstrates that misalignments are corrected.

In the end, Poisson fusion [13] is used to hide seams.

3. EXPERIMENTAL RESULTS AND ANALYSIS
The proposed method is implemented on Visual Studio 2013
platform. In the experiment, we set λmin = 10, λmax =
200, λπ = π/8, λquantity = 0.2. The number of dominant
offsets are K0 = 60,Ki = 10(i ∈ {1, ...,W}). Our image
completion approach is tested on varied images of man-made
scenes1 and natural/semi-natural scenes2. The results are
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(a) Input image (b) Photoshop (c) He[8] (d) Huang[10] (e) Our result

Fig. 4. Comparison with state-of-the-art methods.

(a) (b) (c)

Fig. 3. The misalignments are corrected by offset map refine-
ment. The first row: (a) original image, (b) completion result
before refining and (c) after refining. The second row: patches
with misalignments in (b). The third row: corresponding re-
fined patches in (c).

compared to state-of-the-art image completion methods. The
whole pictures and more experimental results can be found
on our website3.

We compare our approach with Photoshop Content Aware
Fill [4, 6], Offset-Based method [8] and Planar Structure
Guidance method [10]. Fig. 4 shows the results. In the
man-made scenes, the structures crack in Photoshop’s and
He’s results, for both methods search patches in only trans-

1https://sites.google.com/site/jbhuang0604/publications/struct completion
2http://people.irisa.fr/Olivier.Le Meur/publi/2013 TIP/index.html
3http://www.icst.pku.edu.cn/course/icb/Projects/HIC3D.html

lation transformation space. Compared to Photoshop and
He’s method, our approach enhances the target image data to
allow for a broader perspective transformation search space
and suffers fewer artifacts. Meanwhile, Huang’s method al-
lows for a search space of more degrees of freedom and main
structures are preserved. As shown in Fig. 5, compared to
Huang’s results, our approach suffers fewer distortions thanks
to the perspective shift. In the semi-natural scenes, Huang’s
results suffer blurring artifacts. Our results owns better visual
quality, which demonstrates the superiority of the proposed
method.

(a) Huang[10] (b) Our result (c) Huang[10] (d) Our result

Fig. 5. Comparisons with Huang’s work for the local images.
Our approach suffers less structure line distortions

4. CONCLUSION
Given a target image with missing regions, the dominant
structure lines of it is detected and used to guide the image
data enhancement to obtain several transformed versions of
the target image in a self-reproductive way. These enhanced
images are combined to reconstruct the target image using the
proposed regularity-statistics-based approach. The hierarchi-
cal implementation accelerates the algorithm and works for
more robust structure feature detection. We validate the effec-
tiveness of our method by comparisons with state-of-the-art
image completion methods.
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